Главная страница
Навигация по странице:

  • Твердое состояние

  • полиморфизмом.

  • Отличие аморфных частиц от кристаллических

  • Жидкое состояние

  • Паро – и газообразное состояния Паро-газообразное состояние обычно не различают. Газ

  • Тема 1.4. Агрегатные состояния вещества+. Агрегатное состояние вещества Вещество



    Скачать 0.99 Mb.
    НазваниеАгрегатное состояние вещества Вещество
    АнкорТема 1.4. Агрегатные состояния вещества+.doc
    Дата01.05.2017
    Размер0.99 Mb.
    Формат файлаdoc
    Имя файлаТема 1.4. Агрегатные состояния вещества+.doc
    ТипДокументы
    #5764

    Агрегатное состояние вещества
    Веществореально существующая совокупность частиц, связанных между собой химическими связями и находящихся при определенных условиях в одном из агрегатных состояний. Любое вещество состоит из совокупности очень большого числа частиц: атомов, молекул, ионов, которые могут объединяться между собой в ассоциаты, называемые также агрегатами или кластерами. В зависимости от температуры и поведения частиц в ассоциатах (взаимное расположение частиц, их число и взаимодействие в ассоциате, а также распределение ассоциатов в пространстве и их взаимодействии между собой) вещество может находиться в двух основных агрегатных состояниях – кристаллическом (твердом) или газообразном, и в переходных агрегатных состояниях – аморфном (твердом), жидкокристаллическом, жидком и парообразном. Твердое, жидкокристаллическое и жидкое агрегатные состояния являются конденсированными, а парообразное и газообразное – сильно разряженными.

    Фаза – это совокупность однородных микрообластей, характеризующихся одинаковой упорядоченностью и концентрацией частиц и заключенных в макроскопическом объеме вещества, ограниченном поверхностью раздела. В таком понимании фаза характерна только для веществ, находящихся в кристаллическом и газообразном состояниях, т.к. это однородные агрегатные состояния.

    Метафаза – это совокупность разнородных микрообластей, отличающихся друг от друга степенью упорядоченности частиц или их концентрацией и заключенных в макроскопическом объеме вещества, ограниченном поверхностью раздела. В таком понимании метафаза характерна только для веществ, находящихся в неоднородных переходных агрегатных состояний. Разные фазы и метафазы могут смешиваться между друг с другом, образуя одно агрегатное состояние, и тогда между ними нет поверхности раздела .

    Обычно не разделяют понятия «основное» и «переходное» агрегатные состояния. Понятия «агрегатное состояние», «фаза» и «мезофаза» часто используют как синонимы. Целесообразно рассматривать для состояния веществ пять возможных агрегатных состояний: твердое, жидкокристаллическое, жидкое, парообразное, газообразное. Переход одной фазы в другую фазу называют фазовым переходом первого и второго рода. Фазовые переходы первого рода характеризуются:

    - скачкообразным изменением физических величие, описывающих состояние вещества ( объем, плотность, вязкость и т.д.);

    - определенной температурой, при которой совершается данный фазовый переход

    - определенной теплотой, характеризующий данный переход, т.к. рвутся межмолекулярные связи.

    Фазовые переходы первого рода наблюдаются при переходе из одного агрегатного состояния в другое агрегатное состояние. Фазовые переходы второго рода наблюдаются при изменении упорядоченности частиц в пределах одного агрегатного состояния, характеризуются:

    - постепенное изменение физических свойств вещества;

    - изменение упорядоченности частиц вещества под действием градиента внешних полей или при определенной температуры, называемой температурой фазового перехода;

    - теплота фазовых переходов второго рода равна и близка к нулю.

    Главное различие фазовых переходов первого и второго рода заключается в том, что при переходах первого рода, прежде всего, изменяется энергия частиц системы, а в случае переходов второго рода – упорядоченность частиц системы.

    Переход вещества из твердого состояния в жидкое называется плавлением и характеризуется температурой плавления. Переход вещества из жидкого в парообразное состояние называется испарением и характеризуется температурой кипения. Для некоторых веществ с небольшой молекулярной массой и слабым межмолекулярным взаимодействием возможен непосредственный переход из твердого состояния в парообразное, минуя жидкое. Такой переход называется сублимацией. Все перечисленные процессы могут протекать и в обратном направлении: тогда их называют замерзанием, конденсацией, десублимацией.

    Вещества, не разлагающиеся при плавлении и кипении, могут находиться в зависимости от температуры и давления во всех четырех агрегатных состояниях.

    Твердое состояние
    При достаточно низкой температуре практически все вещества находятся в твердом состоянии. В этом состоянии расстояние между частицами вещества сопоставимы с размерами самих частиц, что обеспечивает их сильное взаимодействие и значительное превышение у них потенциальной энергии над кинетической энергией.. Движение частиц твердого вещества ограничено только незначительными колебаниями и вращениями относительно занимаемого положения, а поступательное движение у них отсутствует. Это приводит к внутренней упорядоченности в расположении частиц. Поэтому для твердых тел характерна собственная форма, механическая прочность, постоянный объем (они практически несжимаемы). В зависимости от степени упорядоченности частиц твердые вещества разделяются на кристаллические и аморфные.

    Кристаллические вещества характеризуются наличием порядка в расположении всех частиц. Твердая фаза кристаллических веществ состоит из частиц, которые образуют однородную структуру, характеризующуюся строгой повторяемостью одной и той же элементарной ячейки во всех направлениях. Элементарная ячейка кристалла характеризует трехмерную периодичность в расположении частиц, т.е. его кристаллическую решетку. Кристаллические решетки классифицируются в зависимости от типа частиц, составляющих кристалл, и от природы сил притяжения между ними.


    Многие кристаллические вещества в зависимости от условий (температура, давление) могут иметь разную кристаллическую структуру. Это явление называется полиморфизмом. Общеизвестные полиморфные модификации углерода: графит, фуллерен, алмаз, карбин.


    Аморфные (бесформенные) вещества. Это состояние характерно для полимеров. Длинные молекулы легко изгибаются и переплетаются с другими молекулами, что приводит к нерегулярности в расположении частиц.

    Отличие аморфных частиц от кристаллических:

    • изотропия – одинаковость физических и химических свойств тела или среды по всем направлениям, т.е. независимость свойств от направления;

    • отсутствие фиксированной температуры плавления.

    Аморфную структуру имеют стекло, плавленый кварц, многие полимеры. Аморфные вещества менее устойчивы, чем кристаллические, и поэтому любое аморфное тело со временем может перейти в энергетически более устойчивое состояние – кристаллическое.
    Жидкое состояние
    При повышении температуры энергия тепловых колебаний частиц возрастает, и для каждого вещества имеется температура, начиная с которой энергия тепловых колебаний превышает энергию связей. Частицы могут совершать различные движения, смещаясь относительно друг друга. Они еще остаются в контакте, хотя правильная геометрическая структура частиц нарушается – вещество существует в жидком состоянии. Вследствие подвижности частиц для жидкого состояния характерны броуновское движение, диффузия и летучесть частиц. Важным свойством жидкости является вязкость, которая характеризует межассоциатные силы, препятствующие свободному течению жидкости.

    Жидкости занимают промежуточное положение между газообразным и твердым состоянием веществ. Более упорядочная структура, чем газ, но менее чем твердое вещество.
    Паро – и газообразное состояния
    Паро-газообразное состояние обычно не различают.

    Газ – это сильно разряженная однородная система, состоящая из отдельных молекул, далеко отстоящих друг от друга, которую можно рассматривать как единую динамическую фазу.

    Пар - это сильно разряженная неоднородная система, представляющая собой смесь молекул и неустойчивых небольших ассоциатов, состоящих из этих молекул.

    Молекулярно-кинетическая теория объясняет свойства идеального газа, основываясь на следующих положениях: молекулы совершают непрерывное беспорядочное движение; объем молекул газа пренебрежимо мал по сравнению с межмолекулярными расстояниями; между молекулами газа не действуют силы притяжения или отталкивания; средняя кинетическая энергия молекул газа пропорциональна его абсолютной температуре. Вследствие незначительности сил межмолекулярного взаимодействия и наличия большого свободного объема для газов характерны: высокая скорость теплового движения и молекулярной диффузии, стремление молекул занять как можно больший объем, а также большая сжимаемость.

    Изолированная газофазная система характеризуется четырьмя параметрами: давлением, температурой, объемом, количеством вещества. Связь между данными параметрами описывается уравнением состояния идеального газа:

    pV = nRT

    R = 8,31 кДж/моль – универсальная газовая постоянная.
    написать администратору сайта