Главная страница
Навигация по странице:

  • Введение ПЛАСТМАССЫ

  • Полимеризация. Слово «полимер» греческого происхождения. Буквально, полимер это молекула, состоящая из многих ( поли

  • Известно много типов полимеризации, однако наиболее распространены два из них: присоединительная (аддиционная) полимеризация и поликонденсация. В

  • присоединительной полимеризации

  • , состоящие из 6 атомов каждая, соединяются, образуя полиэтилен. Фрагмент полиэтиленовой цепи выглядит следующим образом: стоматология ортопедический пластмасса полиамид

  • Вся цепь содержит более 6000 атомов. Углеродные атомы цепи соединены простыми (одинарными), а не двойными связями (рис. 1). Эту реакцию можно записать как n

  • O превращается в полиэтиленоксид согласно схеме: Эти структуры возможны, поскольку углеродный атом образует четыре связи с другими атомами, кислород - две, а водород - одну связь.

  • Например, гексаметилендиамин H

  • Другим большим семейством продуктов поликонденсации являются полиэфиры. Из них особенно важен полимер, получаемый взаимодействием терефталевой кислоты HOOC-C

  • -COOH и этиленгликоля HO-CH

  • Важным процессом этого типа является присоединительная полимеризация дивинилбензола

  • Хорошо известный реактопласт - феноло-формальдегидную смолу - получают поликонденсацией фенола с формальдегидом. Первая стадия выглядит следующим образом

  • Тригидроксиметилфенол, реагируя с фенолом, способен отщеплять воду и образовывать трехмерную сетчатую структуру

  • Глава I. Обзор литературы

  • Таблица 2

  • 1.2 Термопластические материалы

  • Ортопедическая стоматология (Аюшиев Б. М.-Б.). Ортопедическая стоматология (Аюшиев Б. М.-Б. Применение современных стоматологических термопластических материалов в практике ортопедической стоматологии



    Скачать 77.53 Kb.
    НазваниеПрименение современных стоматологических термопластических материалов в практике ортопедической стоматологии
    АнкорОртопедическая стоматология (Аюшиев Б. М.-Б.).docx
    Дата09.01.2018
    Размер77.53 Kb.
    Формат файлаdocx
    Имя файлаОртопедическая стоматология (Аюшиев Б. М.-Б.).docx
    ТипДокументы
    #14855
    страница1 из 3
      1   2   3

    «Применение современных стоматологических термопластических материалов в практике ортопедической стоматологии»

    План

    Введение

    Глава I. Обзор литературы

    1.1 Основные свойства пластмасс

    1.2 Термопластические материалы

    Глава II. Применение современных полимеров в практике ортопедической стоматологии

    2.1 Историческая справка

    2.2 Актуальность проблемы

    2.3 Характеристика современных стоматологических термопластических материалов

    2.4 Основные характеристики полиамидов (нейлон)

    2.5 Основные характеристики полиоксиметилена

    2.6 Основные характеристики полипропилена

    2.7 Основные характеристики безмономерных акриловых пластмасс (полиметилметакрилата)

    2.8 Основные характеристики этиленвинилацетата

    Глава III. Собственное исследование

    3.1 Материалы и методы исследования

    3.2 Результаты исследований

    Заключение

    Список используемой литературы

    Введение

    ПЛАСТМАССЫ (пластические массы, пластики). Большой класс полимерных органических легко формуемых материалов, из которых можно изготавливать легкие, жесткие, прочные, коррозионностойкие изделия.

    Эти вещества состоят в основном из углерода (C), водорода (H), кислорода (O) и азота (N). Все полимеры имеют высокую молекулярную массу, от 10 000 до 500 000 и более; для сравнения, кислород (O2) имеет молекулярную массу 32. Таким образом, одна молекула полимера содержит очень большое число атомов.

    Некоторые органические пластические материалы встречаются в природе, например асфальт, битум, шеллак, смола хвойных деревьев и копал (твердая ископаемая природная смола). Обычно такие природные органические формуемые вещества называют смолами. В ряде случаев в качестве сырья применяются природные полимеры - целлюлоза, каучук или канифоль; чтобы достичь желаемой эластичности, их подвергают различным химическим реакциям. Например, целлюлозу посредством разнообразных реакций можно превратить в бумагу, моющие средства и другие ценные материалы; из каучука можно получить резину и изолирующие материалы, используемые как покрытия; канифоль после химической модификации становится более прочной и устойчивой к действию растворителей.

    Хотя модифицированные природные полимеры и находят промышленное применение, большинство используемых пластмасс являются синтетическими. Органическое вещество с небольшой молекулярной массой (мономер) сначала превращают в полимер, который затем прядут, отливают, прессуют или формуют в готовое изделие. Сырьем обычно являются простые, легко доступные побочные продукты угольной и нефтяной промышленности или производства удобрений.

    Полимеризация. Слово «полимер» ? греческого происхождения. Буквально, полимер ? это молекула, состоящая из многих (поли-) частей (мерос), каждая из которых представляет собой мономерное, т.е. состоящее из одной (монос) части, звено полимерной цепи. Реакция получения полимера из мономера называется полимеризацией. Полимерные молекулы обычно представляют собой очень длинные цепи, линейные или разветвленные. Образование этих молекул возможно благодаря тому, что атомы углерода легко и прочно соединяются друг с другом и со многими другими атомами.

    Известно много типов полимеризации, однако наиболее распространены два из них: присоединительная (аддиционная) полимеризация и поликонденсация.

    В присоединительной полимеризации мономеры присоединяются друг к другу непосредственно, без изменения состава. Например, молекулы этилена H2C=CH2, состоящие из 6 атомов каждая, соединяются, образуя полиэтилен. Фрагмент полиэтиленовой цепи выглядит следующим образом:

    стоматология ортопедический пластмасса полиамид

    Вся цепь содержит более 6000 атомов. Углеродные атомы цепи соединены простыми (одинарными), а не двойными связями (рис. 1). Эту реакцию можно записать как nH2C=CH2 ? [-CH2-CH2-]n, где n (число составных звеньев) может достигать 1000 и более, т.е. структура в скобках должна повторяться 1000 и более раз. Сходным образом этиленоксид C2H4O превращается в полиэтиленоксид согласно схеме:

    Эти структуры возможны, поскольку углеродный атом образует четыре связи с другими атомами, кислород - две, а водород - одну связь.

    Присоединительная полимеризация редко идет самопроизвольно. Она может быть инициирована определенными катализаторами, обычно свободнорадикальными, катионными или анионными. Инициированные ими реакции ? экзотермические (идущие с выделением тепла). Промышленные полимеризационные процессы, проводимые в интервале температур от -80о до 120оС, дают большие выходы полимеров за короткое время.

    При поликонденсации два или несколько различных мономеров реагируют, образуя цепь. При этом от их молекул отщепляются небольшие фрагменты, которые, соединяясь друг с другом, обычно образуют воду, т.е. в конечном полимерном продукте присутствуют не все атомы мономеров. Важное условие поликонденсации состоит в том, чтобы каждый мономер был бифункциональным, т.е. содержал две функциональные группы; обе они могут реагировать с функциональными группами другого компонента. Функциональные группы ? это те части молекулы, которые непосредственно участвуют в химической реакции, т.е. места, где атомы, ионы, радикалы или другие группы могут либо отщепляться от молекулы, либо присоединяться к ней.

    Например, гексаметилендиамин H2N(CH2)6NH2 имеет две аминогруппы NH2, поэтому его называют диамином. Адипиновая кислота HOOC(CH2)4COOH имеет две карбоксильные группы COOH, поэтому ее называют дикарбоновой или двухосновной кислотой. В реакции поликонденсации, типичной для всех диаминов и двухосновных кислот, гексаметилендиамин и адипиновая кислота, отщепляя воду, образуют цепь:

    Реакция на этом не заканчивается, поскольку образующиеся промежуточные соединения также бифункциональны и могут реагировать с мономерами или друг с другом. Конечным результатом являются длинные линейные цепи повторяющихся звеньев -HN(CH2)6NH(O)C(CH2)4CO-. Схема реакции показана ниже. Полимеры такого типа называют полиамидами, поскольку они содержат много амидных групп C(O)-NH; они более известны под общим названием найлоны.

    Другим большим семейством продуктов поликонденсации являются полиэфиры. Из них особенно важен полимер, получаемый взаимодействием терефталевой кислоты HOOC-C6H4-COOH и этиленгликоля HO-CH2-CH2-OH. Этот полимер, известный как терилен или дакрон, состоит из повторяющихся звеньев следующего строения:

    Термопласты. Все линейные или слегка разветвленные полимеры термопластичны. Это означает, что они могут многократно размягчаться при нагревании и затвердевать при охлаждении. При этом, в сущности, физическом процессе, похожем на повторяющиеся расплавление и кристаллизацию металла, химических изменений не происходит.

    Реактопласты (термореактивные, или термоотверждающиеся, пластмассы). Если процесс полимеризации протекает более чем в двух направлениях, то возникают молекулы, образующие не линейные цепи, а трехмерную сетку. Эти полимеры можно размягчить нагреванием, но при охлаждении они превращаются в твердые неплавящиеся тела, которые невозможно снова размягчить без химического разложения. Материалы такого рода называют реактопластами. Необратимое затвердевание вызывается химической реакцией сшивки цепей.

    Важным процессом этого типа является присоединительная полимеризация дивинилбензола:

    В дивинилбензоле две двойные винильные связи. В ходе полимеризации они образуют трехмерную сетчатую структуру. При нагревании полученный полимер медленно разлагается.

    Хорошо известный реактопласт - феноло-формальдегидную смолу - получают поликонденсацией фенола с формальдегидом. Первая стадия выглядит следующим образом:

    Тригидроксиметилфенол, реагируя с фенолом, способен отщеплять воду и образовывать трехмерную сетчатую структуру:

    Из вышесказанного следует простой и логичный вывод: все линейные полимеры термопластичны, а все сшитые сетчатые полимеры реактопластичны (термореактивны). Очевидно, структура мономерных единиц и их функциональных групп позволяют предсказать тип пластмассы, получаемой при полимеризации.

    Глава I. Обзор литературы

    1.1 Основные свойства пластмасс

    Химические свойства. С точки зрения химического поведения полимер похож на мономер (или мономеры), из которого (или которых) он получен. Углеводороды этилен H2C=CH2, пропилен H2C=CH-CH3 и стирол H2C=CH-C6H5 претерпевают присоединительную полимеризацию, образуя полиэтилен, полипропилен и полистирол со следующими структурами:

    Эти полимеры ведут себя как углеводороды. Они, например, растворимы в углеводородах, не смачиваются водой, не реагируют с кислотами и основаниями, горят, подобно углеводородам, могут хлорироваться, бромироваться и ? в случае полистирола ? нитроваться и сульфироваться.

    Виниловый спирт CH2=CHOH полимеризуется в поливиниловый спирт

    проявляющий свойства спирта: он растворим в воде, не смачивается маслами, устойчив к действию кислот и щелочей, подвергается этерификации, с альдегидами и оксидами реагирует подобно другим спиртам.

    Полиэфиры, например, состава

    растворимы в некоторых высококипящих растворителях. Они не набухают в воде, но постепенно гидролизуются и разрушаются кислотами и щелочами, особенно при повышенных температурах. Эти реакции и свойства характерны для всех эфиров.

    Полиамиды (например, найлон-6,6; см. выше) ведут себя подобно амидам. Они еще более труднорастворимы, чем полиэфиры, не набухают в воде и гидролизуются под воздействием кислот и оснований при повышенных температурах, но гораздо медленнее, чем полиэфиры.

    Из изложенного ясно, что все главные химические свойства полимеров можно предсказать на основе их формул, рассматриваемых с точки зрения классической органической химии.

    Физические свойства полимера, напротив, зависят не только от характера мономера, но в большей степени от среднего количества мономерных звеньев в цепи и от того, как цепи расположены в конечной макромолекуле.

    Все синтетические и используемые в промышленности природные полимеры содержат цепи с различным числом мономерных единиц. Это число называют степенью полимеризации (СП) и обычно пользуются его средним значением, поскольку цепи не одинаковы по длине. Средняя длина цепи и СП может быть определена экспериментально несколькими методами (например, осмометрией ? измерением осмотического давления различных растворов; вискозиметрией ? измерением вязкости; оптическими методами ? измерением светорассеяния различными растворами; ультрацентрифугированием, при котором вещества разделяются по их плотности). СП особенно важна при определении механических свойств полимера, поскольку при прочих равных условиях более длинные цепи налагаются друг на друга более эффективно и порождают большие силы сцепления. Можно сказать, что заметная механическая прочность наблюдается уже при СП 50-100, достигая максимума при СП выше 1000.

    Термические и механические свойства в сильной мере зависят от расположения мономерных звеньев в полимерных цепях, поскольку полимеры могут кристаллизоваться, если цепи имеют регулярное строение и расположены параллельно друг другу, что достигается процессом, называемым ориентационным вытягиванием с отжигом. Чем выше степень кристалличности, тем тверже продукт, тем выше его температура размягчения и больше устойчивость к набуханию и растворению; низкой степенью кристалличности характеризуются более мягкие продукты с более низкими температурами тепловой деформации и более легкой растворимостью (рис. 1).

    Рис. 1 (Объяснение в тексте)

    Молекулярному движению в полимерах подвержена не вся цепь. Движение происходит в отдельных сегментах, которые колеблются, вращаются и извиваются независимо друг от друга. Это движение зависит от температуры. При низких температурах движение происходит медленно или почти отсутствует, так что некристаллический или аморфный полимер при низких температурах хрупок и тверд, как стекло. Если материал содержит области кристалличности, они в целом действуют как армирующие элементы, и при низких температурах образец жесткий, твердый и труднорастворимый. Нагревание аморфного полимера ускоряет движение сегментов; по мере повышения температуры это движение становится столь сильным, что материал из твердого и хрупкого (стеклообразного) превращается в достаточно мягкий и пластичный. Температура такого перехода называется температурой стеклования Tст. В случае частично-кристаллического полимера это размягчение происходит только в некоторых местах структуры материала; кристаллические области остаются незатронутыми. Выше точки стеклования такие образцы становятся более гибкими и податливыми, но еще сохраняют свои армирующие кристаллические области, усиливающие жесткость. При дальнейшем нагревании достигается температура, когда плавятся кристаллические области; эта температура, Tпл, называется температурой плавления. Выше нее система ведет себя как очень вязкая жидкость. Такое поведение характерно для термопластов, у реактопластов подобных точек перехода нет.

    В табл. 1 показаны критические температуры Tст и Tпл ряда важных промышленных термопластов. Все реактопласты после того, как произошла сшивка цепей, становятся твердыми и жесткими.

    Таблица 1.




    Полимер

    Tст, °С

    Tпл, °С




    Полиэтилен

    ? 80

    135




    Полипропилен

    ? 10

    180




    Полистирол

    100

    ?




    Поливинилхлорид

    80

    270




    Поливинилиденхлорид

    ? 20

    190




    Полиметилметакрилат

    105

    ?




    Полиакрилонитрил

    105

    310




    Найлон-6 (капрон)

    50

    223




    Найлон-6,6

    57

    270




    Полиэтилентерефталат

    69

    265




    Полиформальдегид (полиоксиметилен, параформ)

    ? 85

    180




    Полиэтиленоксид (полиоксиэтилен)

    ? 67

    70




    Триацетат целлюлозы

    130

    300




    Тефлон (политетрафторэтилен)

    ? 113

    325




    Ниже Tст пластмассы хрупки и тверды, между Tст и Tпл - гибки и податливы, выше Tпл они являются вязкими расплавами.






















    Оптические свойства. Пластические материалы бывают различной степени прозрачности ? от совершенно прозрачных до матовых. Все аморфные полимеры прозрачны, тогда как в частично-кристаллических полимерах появляется некоторая мутность из-за различий в показателях преломления кристаллических и аморфных областей, которые неодинаково отклоняют световые лучи; при этом свет рассеивается и материал выглядит мутным. Если степень кристалличности низка и средний размер кристаллических областей мал, менее 500 Е (1 Е = 10-10 м), тонкая пленка материала еще прозрачна (например, майлар, саран, профакс). Высокая же степень кристалличности и более крупные кристаллические области придают дымчатость даже тонким пленкам (например, полиэтилен, найлон-6, найлон-6,6).

    Электрические свойства. Все органические пластмассы являются изоляторами, а потому находят применение в электротехнике и электронике. В табл. 2 приведены некоторые важные электрические свойства ряда промышленных пластмасс.

    Свойства пластмасс зависят от их основных характеристик: а) природы мономеров; б) средней СП; в) степени кристалличности системы.

    Таблица 2. Электрические свойства некоторых промышленных пластмасс




    Полимер

    Диэлектри-ческая проницаемо-сть при 60 Гц

    Электри-ческая прочность, В/см

    Коэффици-ент потери мощности при 60 Гц

    Удельное сопротив-ление, Ом/см




    Полиэтилен

    2,32

    6х106

    5х10-4

    1019




    Полипропилен

    2,5

    2х106

    7х10-4

    1018




    Полистирол

    2,55

    7х106

    8х10-4

    1020




    Полиакрилони-трил

    6,5

    ?

    0,08

    1014




    Найлон-6,6

    7,0

    3х103

    1,8

    1014




    Полиэтилен-

    терефталат

    3,25

    7х103

    0,002

    1018






















    1.2 Термопластические материалы

    Полиэтилен (ПЭ) [-CH2-CH2-]n существует в двух модификациях, отличающихся по структуре, а значит, и по свойствам. Обе модификации получаются из этилена CH2=CH2. В одной из форм мономеры связаны в линейные цепи (см. рис. 1) с СП обычно 5000 и более; в другой - разветвления из 4-6 углеродных атомов присоединены к основной цепи случайным способом. Линейные полиэтилены производятся с использованием особых катализаторов, полимеризация протекает при умеренных температурах (до 150о?С) и давлениях (до 20 атм).

    Линейные полиэтилены образуют области кристалличности (рис. 2), которые сильно влияют на физические свойства образцов. Этот тип полиэтилена (см. таблицу) обычно называют полиэтиленом высокой плотности; он представляет собой очень твердый, прочный и жесткий термопласт, широко применяемый для литьевого и выдувного формования емкостей, используемых в домашнем хозяйстве и промышленности. Полиэтилен высокой плотности прочнее полиэтилена низкой плотности.




    СВОЙСТВА ПОЛИЭТИЛЕНА ВЫСОКОЙ ПЛОТНОСТИ




    СП

    от 1000 до 50 000




    Тпл

    129-135° С




    Тст

    ок. -60° С




    Плотность

    0,95-0,96 г/см3




    Кристалличность

    высокая




    Растворимость

    растворим в ароматических углеводородах только при температурах выше 120° С













    Разветвленные полиэтилены первоначально получали нагреванием этилена (со следами кислорода в качестве инициатора) до температур порядка 200О?С при очень высоких давлениях (свыше 1500 атм). Разветвления уменьшают способность полиэтилена к кристаллизации, в результате эта разновидность полиэтилена имеет следующие свойства:




    СВОЙСТВА ПОЛИЭТИЛЕНА НИЗКОЙ ПЛОТНОСТИ




    СП

    от 800 до 80 000




    Тпл

    108-115° С




    Тст

    ниже -60° С




    Плотность

    0,92-0,94 г/см3




    Кристалличность

    низкая




    Растворимость

    растворим в ароматических углеводородах только при температурах выше 80° С













    Этот полиэтилен обычно называют полиэтиленом низкой плотности. Разработаны методы получения полиэтилена низкой плотности при низком давлении и умеренных температурах сополимеризацией этилена с другим олефином, например бутиленом CH2=CH-CH2-CH3. Там, где в цепь встраивается бутиленовая единица, образуется короткая боковая цепь:

    В этом случае упаковка цепей не может быть столь же плотной, как для «чистого» полиэтилена. Полиэтилен низкой плотности представляет собой прочный, очень гибкий и слегка упругий термопласт, несколько более мягкий, легче формуемый и выдавливаемый, чем полиэтилен высокой плотности; полиэтилен низкой плотности находит широкое применение в производстве покрытий, упаковочных материалов и изделий, изготовляемых методом литьевого формования.

    Полиэтилен ? один из наиболее полезных и важных пластических материалов. Детали электронных устройств, покрытие картонных молочных пакетов, упаковочные пленки и игрушки ? вот далеко не полный перечень того, что делают из полиэтилена.

    Полипропилен (ПП) [-CH2-CH(CH3)-]n получают из пропилена C3H6. В 1954 Дж.Натта (Италия) определил его молекулярную структуру, открыв важный класс стереорегулярных полимеров. Боковые метильные группы CH3 могут располагаться в цепи полипропилена случайным образом

    или регулярно

    Натта назвал полимеры первого типа атактическими, а второго тактическими, в данном специфическом случае ? изотактическими (что значит «на одной стороне»).

    В атактическом полипропилене беспорядочное расположение метильных групп препятствует кристаллизации, в результате получается мягкий, резиноподобный материал, который легко растворим в органических растворителях и размягчается при невысоких температурах. Он используется для получения различных изделий методом экструзии, а также в качестве клея для пластмасс.

    В тактическом полипропилене метильные группы расположены регулярно вдоль цепи. Вследствие этого из тактического полипропилена получаются прочные жесткие термопласты с высокими температурами плавления и отличной устойчивостью к растворителям. Изотактический полипропилен - важный промышленный продукт. Он широко используется для получения волокон и пленок и как материал для литьевого и выдувного формования емкостей.




    СВОЙСТВА ИЗОТАКТИЧЕСКОГО ПОЛИПРОПИЛЕНА




    СП

    от 1000 до 6000




    Тпл

    174-178° С




    Тст

    ок. 0° С




    Плотность

    0,90 г/см3




    Кристалличность

    высокая




    Растворимость

    растворим в ароматических углеводородах только при температурах выше 120° С













    Полистирол (ПС) [-CH2-CH(C6H5)-]n синтезируют из стирола C8H8 с пероксидными или азоинициаторами при температурах 60?150О?С в жидкой фазе (в растворе, суспензии или эмульсии). Расположение бензольных колец по бокам линейной цепи препятствует кристаллизации настолько, что термопластический полимер получается аморфным, прозрачным, жестким и несколько хрупким.




    СВОЙСТВА ПОЛИСТИРОЛА




    СП

    от 500 до 5000




    Тпл

    аморфен и не имеет точки плавления




    Тст

    ок. 90° С




    Плотность

    1,08 г/см3




    Кристалличность

    Отсутствует




    Растворимость

    легко растворим в ароматических углеводородах и кетонах при комнатной температуре













    Несмотря на чувствительность к воздействию растворителей и некристаллический характер, полистирол ? один из наиболее важных термопластов, благодаря своей прозрачности, легкой формуемости и прекрасным электроизолирующим свойствам. Полистирол широко используется в электрическом оборудовании, предметах обихода, игрушках и особенно как теплоизоляционный пенопласт. В последние годы получен полистирол с более высокой ударопрочностью благодаря добавкам эластических компонентов; новые сорта расширили сферу применения этого полимера.

    Полиметилметакрилат (ПММА) [-CH2-C(COOCH3)(CH3)-]n - аморфный прозрачный термопласт, имеющий важное промышленное значение. Его синтезируют из метилметакрилата C5H8O2 так же, как полистирол получают из стирола. Он тверд (несколько тверже полистирола), абсолютно бесцветен и кристально прозрачен, Tст ок. 100??С. Полиметилметакрилат широко используют для изготовления украшений, оптики и других товаров, где желательно высокое качество.

    Поливинилхлорид (ПВХ) [-CH2-CHCl-]n получают из его мономера, винилхлорида CH2=CHCl при температурах от 20??С до 100??С с пероксидными инициаторами (синтез аналогичен синтезу полистирола). Поливинилхлорид состоит из линейных цепей и является атактическим полимером, а следовательно, аморфным, твердым, жестким, устойчивым к воздействию растворителей термопластом.




    СВОЙСТВА ПОЛИВИНИЛХЛОРИДА




    СП

    от 500 до 5000




    Тпл

    аморфен и не имеет точки плавления




    Тст

    ок. 20° С




    Плотность

    1,60 г/см3




    Кристалличность

    очень низкая




    Растворимость

    растворим при комнатной температуре в небольшом числе растворителей













    Особенно важное свойство поливинилхлорида огнестойкость, связанная с присутствием хлора в его молекуле (ок. 55%). Хлор придает поливинилхлориду жесткость, полимер размягчается лишь при высоких температурах; по этой причине в некоторых случаях приходится вводить пластификаторы (10?40%), чтобы сделать его более легко формуемым, выдавливаемым и выдуваемым. Поливинилхлорид используется в больших количествах в производстве волокон, пленок, труб, резины, формованных изделий, искусственной кожи и покрытий.

      1   2   3
    написать администратору сайта