Главная страница
Навигация по странице:

Лаб.раб.№6. Маятн Обербека. Лабораторная работа 6 Изучение законов вращательного движения на крестообразном маятнике Обербека



Скачать 188.5 Kb.
Название Лабораторная работа 6 Изучение законов вращательного движения на крестообразном маятнике Обербека
Анкор Лаб.раб.№6. Маятн Обербека.doc
Дата 29.04.2017
Размер 188.5 Kb.
Формат файла doc
Имя файла Лаб.раб.№6. Маятн Обербека.doc
Тип Лабораторная работа
#4831

Лабораторная работа №6

Изучение законов вращательного движения

на крестообразном маятнике Обербека
Цель Экспериментальная проверка основного уравнения вращательного движения (второго закона динамики для вращательного движения).

Оборудование: маятник Обербека, набор грузов, секундомер, штангенциркуль, линейка.

Описание экспериментальной установки:

Маятник Обербека состоит из четырех спиц с грузами массой m, укрепленных на втулке под прямым углом друг к другу. На втулке насажены два шкива различных радиусов D1 и D2 (см. рис. 1).

Втулка и шкивы насажены на общую ось, которая закреплена в подшипниках. поэтому система может свободно вращаться.

Момент инерции системы можно изменить, перемещая грузы вдоль спиц.

На один из шкивов маятника навита тонкая нить, привязанная к ней легкая платформа известной массы, служит для размещения грузов.

Если на платформу поместить груз, то система выходит из положения равновесия и начинает вращаться.
Краткая теория:

Моментом инерции системы (тела) относительно оси вращения называется физическая величина, равная сумме произведения масс пматериальных точек на квадраты их расстояний rдо рассматриваемой оси:

(1)

В случае непрерывного распределения масс эта сумма сводится к интегралу: (2)
Теорема Гюйгенса-Штейнера: момент инерции тела J0’0’ относительно любой оси 0’0’ вращения равен сумме момента его инерции Joo, относительно параллельной оси 00, проходящей через центр масс тела и произведению массы тела на квадрат расстояния Rмежду осями 0’0’ и 00 (см. рис.2)
J0’0’ =J00 + mR2 (3)

Основное уравнение динамики вращательного движения относительно неподвижной оси для твердого тела имеет вид

, (4)

где J- момент инерции системы, ε - угловое ускорение, сумма моментов сил, действующих на систему.

Связь между линейным и угловым ускорениями: (5)

Вывод рабочей формулы:

  • Формулы кинематики для вращательного движения аналогичны формулам кинематики поступательного движения.

Основное уравнение кинематики для прямолинейного равномерного движения:

, (6)

где S путь,S0 исходный путь, V0 исходная скорость; а - ускорение; t время.

Если S0 =0 и V0=0, путь определяется по формуле (7)

  • Если пренебречь силами трения, то основное уравнение динамики в проекциях на ось вращения для маятника Обербека запишется следующим образом:

, (8)

где М = RT- момент сил, создаваемый силой натяжения нити,

R- радиус шкива, Т- сила натяжения нити.

  • Уравнение поступательного движения груза на нити: ma = тg T,(9)

где а- ускорение движущегося груза на нити, т- масса груза, g - ускорение свободного падения.

  • Линейное ускорение поступательного движения груза может быть найдено из основного уравнения кинематики:

где S - расстояние, которое проходит груз за время t.
Основное уравнение динамики вращательного движения можно проверить двумя способами:

Способ 1. Рассмотрим случай, когда момент инерции системы не изменяется(положение грузов на спицах маятника неизменно), а моменты сил различны - за счет изменения массы грузов при использовании шкивов с радиусами R1и R2. Тогда можно из основного уравнения динамики получить соотношение:

= const(10)

Поскольку из уравнения поступательного движения груза сила натяжения нити равна

T= mg-ma, (11)

то момент сил, создаваемый силой натяжения нити М= RT = R(mg - та). (12)

Подставим значения момента силы натяжения нити и значение ускорения: с учетом, что , из уравнения (11) после соответствующих преобразований получим равенство

m1R12 (gt12 – 2S) = m2R22 (gt22 – 2S), (13)

В эту формулу входят легко определяемые величины.. Если при подстановке измеренных величин равенство (13) выполняется (в пределах погрешностей), это означает, что основное уравнение динамики вращательного движения также справедливо.
Способ 2. Моменты сипы натяжения нити неизменны(масс груза и шкив одни и те же), но меняется момент инерции - за счет изменения положения грузов на спицах прибора

На основании теоремы Штейнера-Гюйгенса полный момент инерции системы при удалении четырех грузов m на спицах на расстоянии L1:

J1= J00 +J0 +4mL12 (14)

где J00- момент инерции маятника без грузов,J0 - момент инерции всех четырех грузов 4m', относительно оси, проходящей через центр масс.

!! Для различения обозначений грузы на спицах обозначены как m ,

а грузы, тянущие бечевку, через m (m1или m2) !!

Аналогично при удалении грузов на расстоянии L2:

J2=J00 + J0+4m’L22

Если L1>L2, то J1.- J2 = 4m’ (L12- L22) >0..

Учитывая. J1 = М11 и J2= М22 из второго закона динамики вращательного движения можно записать:

(15)

Повторим, что поскольку из уравнения поступательного движения груза сила натяжения нити равна T= mg-ma, то момент сил, создаваемый силой натяжения нити

М = RT = R(mg - та).

Подставим значения момента силы натяжения нити и значение ускорения: с учетом, что после соответствующих преобразований получим

(16)

В эту формулу входят величины, которые можно измерить на данной установке.

Если при подстановке измеренных величин равенство выполняется (в пределах погрешностей), то также справедливо основное уравнение вращательного движения.
Выполнение работы

1 задание Экспериментально проверить основное уравнение динамики при неизменном значении момента инерции маятника:

m1R12 (gt12 – 2S) = m2R22 (gt22 – 2S), (рабочая формула) (13)

  1. определить высоту опускания груза S;

  2. измерить диаметры шкивов 2R1и 2R2штангенциркулем в разных местах 5 раз;

  3. определить среднее значение радиуса R1сри R2ср

  4. определить абсолютную погрешность каждого измерения по формуле:

ΔRi= ׀ ‌RcpRi ׀

5. среднюю абсолютную погрешность по формуле:

6. окончательный результат запишите в виде: Ri = Ric ± ΔRic -результаты занесите в таблицу;
Таблица к заданию 1

S

m1



R1

Δ R1

t1

m2



R2

Δ R2

t2






1













1










2










2










3










3










4










4










5










5










Среднее










Среднее










ml R2] (g t12 – 2 S)=




m2R22(gt22– 2 S)=





7. перекиньте нить на шкив с радиусом R,. Установите грузы т на спицах на одинаковых расстояниях Lxот оси, таким образом, чтобы прибор находился в равновесии;

8. положите на платформу груз т1и измерьте секундомером время ti опускания груза на расстояние S, измерение повторите 5 раз. То же самое проделайте с грузом т2. Найдите среднее значение времени опускания груза, абсолютные погрешности каждого измерения, средние абсолютные погрешности. Результаты занесите в таблицу.

  1. Расcчитать значения mlR21 (gt12 – 2S) и m2R22(gt22 –2S), проверьте равенство между ними. , вставить значения в таблицу.

  2. Сделайте соответствующие выводы

ВЫВОДЫ ЗАПИСАТЬ в тетрадь СЛОВАМИ!.
II задание: экспериментально проверьте основное уравнение динамики при переменном значении момента инерции (за счет изменения положения грузов на спицах прибора) и неизменном значении момента силы натяжения нити действующего на систему.
(рабочая формула). (16)
1. определите с помощью штангенциркуля расстояние L1от центра масс грузов до оси вращения;

  1. измерьте время падения груза т 5 раз, для случая, когда грузы удалены от оси вращения на расстояние L1, (можно использовать результаты предыдущего задания);

  2. уменьшите расстояние между центрами масс грузов до оси вращения на спицах;

  3. определите с помощью штангенциркуля расстояние L2 отцентра масс грузов до оси вращения;

  1. измерьте время падения этого же груза m5 раз, для случая, когда грузы удалены от оси вращения на расстояние L2 (L1>L2).

  2. результаты запишите в таблицу;

9. вычислите левую и правую часть уравнения (16), вставить полученные значения в таблицу.

10. Сделайте соответствующие выводы

ВЫВОДЫ ЗАПИСАТЬ в тетрадь СЛОВАМИ!.
Таблица к заданию 2

m

R

S

L1

L2



t1

t2
















1







2







3







4







5







средние







=




=






Контрольные вопросы


  1. Опишите устройство маятника Обербека.

  2. Момент инерции системы (тела)

  3. Момент сил относительно оси вращения

  4. Основной закон динамики вращательного движения.

  5. Теорема Штейнера-Гюйгенса.

  6. Линейное и угловое ускорения, связь между этими ускорениями.

  7. Основной закон динамики вращательного движения для маятника Обербека при действии момента силы натяжения нити.

  8. Уравнение поступательного движения груза на нити.

  9. Первый способ проверки основного закона вращательного движения при помощи маятника Обербека (постоянный момент инерции, при различных вращающих моментах)

  10. Второй способ проверки основного закона вращательного движения при помощи маятника Обербека (постоянный вращающий момент при различных моментах инерции)


Литература:


  1. Обшая физика: Руководство полабораторному практикуму./Под ред. Крынецкого И.Б. и Струкова Б.А. – М.: ИНФРА-М, 2008.

  2. Архангельский М. М. Курс физики. Механика, изд.2 испр. и доп. «Просвещение», 1965 г.

  3. Фриш С. Э., Тиморева А. В. Курс общей физики, т. 1. Физические основы механики Молекулярная физика. Колебания и волны. М., Физматгиз. 1962

  4. Практикум по общей физике. Под ред. Проф. В. Ф. Ноздрева М. «Просвещение 1971 г.

  5. . «Лабораторный практикум по общей физике». Механика. Под ред. А.Н. Капитонова. Якутск: изд-во ЯГУ, 1988 г.


ПРИЛОЖЕНИЕ 1

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ
Для вращательного движения существуют величины, уравнения движения и формулы, аналогичные существующим для поступательного движения.

Величины

Поступательное движение

Вращательное движение

Перемещение

s

Путь

φ

Угол поворота

Скорость

V

Скорость линейная V=dS / dt

ω

Скорость угловая

ω =dφ / dt

Ускорение

а

Ускорение линейное а = d2S / dt2

ε

Ускорение угловое

ε = d2φ / dt2

Простейшие примеры кинематики вращательного движения

Уравнение равно-мерного движения

(ускорение =0)

ΔS=VΔt

Δφ = ωΔt

Уравнение равно-ускоренного движения -

ускорение = const

ΔS=Vо Δt+a(Δt)2/2

Δφ = ωoΔt+ ε(Δt)2/2

Мера интенсивности воздействия

F

Сила

M

Момент силы M= Fl

где l- длина рычага

Мера инертности

m

Масса

J

Момент инерции

Количество движения

р

Импульс р=mV

L

Момент импульса L= J ω

Основной закон

динамики

Общий вид

II закон Ньютона

F=ma

FΔt = Δ(mV)=Δp

Основной закон динамики вращательного движения M=J ε

M Δt = Δ(ωL) = ΔL

Работа

dА = F dS

dA = M dφ

Кинетическая энергия

mV 2 / 2

Jω2 / 2

Потенциальная энергия упругой деформации

Энергия линейной

деформации kx2/2

Энергия сдвиговой (крутильной) деформации f φ2/2

Закон Гука для

упругой деформации

F=-kx dσ= Е dε

M= - fφ dτ = G dγ


Моменты инерции некоторых геометрических тел

Тело

J

Тело

J

Цилиндр с тонкими стенками радиусом R




mR2

Сплошной

однородный

стержень

длиной L




1/12 mL2

Сплошной однородный диск или цилиндр радиусом R




½mR2




1/3 mL2

Сфера сплошная однородная

радиусом R




2/5 mR2

Прямоугольная призма со сторонами основания cи b




1/12 m *(c2 +b2}
написать администратору сайта