Главная страница
Навигация по странице:

Методические указания к выполнению практической работы по дисциплине Токсикология для студентов направления 280700. 62 Техносферная безопасность



Скачать 103.5 Kb.
Название Методические указания к выполнению практической работы по дисциплине Токсикология для студентов направления 280700. 62 Техносферная безопасность
Анкор PZ_3.doc
Дата 29.09.2017
Размер 103.5 Kb.
Формат файла doc
Имя файла PZ_3.doc
Тип Методические указания
#10585


Министерство образования и науки Российской Федерации

Муромский институт (филиал)

федерального государственного бюджетного образовательного учреждения

высшего профессионального образования

«Владимирский государственный университет

имени Александра Григорьевича и Николая Григорьевича Столетовых»

(МИ (филиал) ВлГУ)

Кафедра техносферной безопасности


Практическое занятие №3

Пути поступления токсических веществ в организм.
Методические указания к выполнению практической работы по дисциплине «Токсикология»

для студентов направления 280700.62 «Техносферная безопасность»

Муром 2012
Пути поступления токсических веществ в организм.

Согласно варианта задания:

1. Описать механизм резорбции химического вещества через кожные покровы организма (перкутанно).

2. Описать механизм резорбции химического вещества через слизистые оболочки организма (ингаляционно).

3. Описать механизм резорбции химического вещества через слизистые оболочки организма (перорально).
Таблица 1

№ варианта

Порядковый номер вещества по ГН 2.2.5.1313-03

Примечание

1

264

238

220




2

353

1555

223




3

356

1760

235




4

596

1837

1148




5

635

2143

1529




6

821

2291

1783




7

833

365

2216




8

983

375

226




9

996

620

485




10

1015

691

513




11

1102

225

933




12

1207

282

1077




13

1214

1131

1101




14

1217

1506

1454




15

1638

1582

1469




16

1648

1821

1495




17

1801

1849

1505




18

1922

2010

1648




19

2147

2028

1850




20

2357

2112

2027




21

52

2118

2209




22

58

2125

2231




23

152

2169

2287




24

425

2202

455




25

479

2208

810




26

591

2312

825




27

618

193

1001




28

635

231

1022




29

651

419

1055




30

214

436а

1191






Для определения полных характеристик веществ использовать данные INTERNETа

Материалы, необходимые для выполнения практической работы.

1. Пути поступления токсических химических веществ в организм

Токсические химические вещества (токсиканты) могут поступать в организм через кожные покровы (перкутанно), дыхательные пути (ингаляционно), желудочно-кишечный тракт (перорально). Поступление токсиканта из окружающей среды в кровеносную и лимфатическую системы организма называется резорбцией, а действие токсиканта при этом – резорбтивным (системным) действием. Токсические вещества могут оказывать местное действие на кожу, слизистые оболочки и при этом не поступать в кровеносную или лимфатическую системы (резорбция отсутствует). Токсиканты обладают способностью к местному и резорбтивному действиям.

Путь поступления вещества в организм определяется его агрегатным состоянием, месторасположением в окружающей среде, площадью соприкосновения с организмом. Так, вещество в форме пара имеет очень высокую вероятность всасываться в дыхательных путях, но не может попасть в организм через желудочно-кишечный тракт и кожные покровы.

Скорость и характер резорбции веществ определяется рядом факторов: особенностями организма; количеством и свойствами вещества; параметрами окружающей среды. Поэтому качественные и количественные характеристики резорбции токсиканта могут изменяться в широких пределах.

Резорбция через кожные покровы. Поверхностный роговой слой эпидермиса препятствует резорбции токсикантов. Кожа представляет собой электрически заряженную мембрану, где и осуществляется метаболизм токсических химических веществ в количестве 2-6% относительно метаболической активности печени.

Поступление веществ через кожу осуществляется тремя путями: через эпидермис; через сальные и потовые железы; через волосяные фолликулы. Для хорошо проникающих через кожу низкомолекулярных и липофильных соединений основным является трансэпидермальный путь. Медленно всасывающиеся вещества поступают трансфолликулярным и трансгландулярным путями. Напр., хорошо растворяющиеся в жирах сернистый и азотистый иприты проникают через кожу трансэпидермально.

При трансэпидермальном проникновении веществ возможно прохождение их через клетки и через межклеточные пространства. Рассматривая прохождение веществ через кожу, следует различать собственно резорбцию (поступление в кровь) и местное действие

(депонирование веществ в коже). Проникновение ксенобиотиков через кожу представляет

собой процесс пассивной диффузии. На скорость резорбции влияют площадь и локализация резорбирующей поверхности, интенсивность кровоснабжения кожи, а также свойства токсиканта. Количество вещества, проникающего через кожу, пропорционально площади контакта вещества и кожи. С увеличением площади увеличивается и количество всасываемого вещества. При действии веществ в форме аэрозоля площадь воздействия с кожей увеличивается с одновременным уменьшением диаметра частиц.

Кровоснабжение кожи меньше, чем других тканей и органов, напр., мышц. При усилении кожного кровотока увеличивается возможность токсических веществ проникать через кожные покровы. Действие раздражающих веществ, ультрафиолетовое облучение, температурное воздействие, сопровождающееся расширением сосудов, открытием анастомозов, усиливает резорбцию токсикантов.

На резорбцию влияют физико-химические свойства токсикантов, прежде всего способность растворяться в липидах (липофильность). Существует отчетливая корреляция между величиной коэффициента распределения в системе масло/вода и скоростью резорбции.

Липофильные агенты (напр., ФОС, иприты, хлорированные углеводы) легко преодолевают кожный барьер. Гидрофильные агенты, особенно заряженные молекулы, практически не проникают через кожу. В этой связи проницаемость барьера для слабых кислот и оснований существенно зависит от степени их диссоциации. Так, салициловая кислота и нейтральные молекулы алкалоидов способны к резорбции, однако анионы кислоты и катионы алкалоидов таким путем в организм не проникают. Вместе с тем проникновение в организм липофильных веществ, вообще не растворяющихся в воде, также невозможно: они депонируются в жировой смазке и эпидермисе и не захватываются кровью. Поэтому масла не проникают через кожу. Кислород, азот, диоксид углерода, сероводород, аммиак, гелий, водород способны к кожной резорбции. Увеличение парциального давления газа в воздухе ускоряет его проникновение в организм, что может приводить к тяжелым интоксикациям.

Повреждение рогового слоя эпидермиса и жировой смазки кожи кератолитическими средствами и органическими растворителями усиливает резорбцию токсикантов. Механическое повреждение кожи с образованием дефектов, особенно обширных, лишает ее барьерных свойств. Через увлажненную кожу токсиканты всасываются лучше, чем через сухую. На скорость резорбции веществ, наносимых в виде эмульсий, растворов, мазей, оказывают влияние свойства носителя (растворителя, эмульгатора, мазевой основы).

Резорбция через слизистые оболочки. Слизистые оболочки не имеют рогового слоя и жировой пленки на поверхности. Они покрыты водной пленкой, через которую вещества легко проникают в ткани организма. Резорбция веществ через слизистые определяется главным образом следующими факторами:

а) агрегатным состоянием вещества (газ, аэрозоль, взвесь, раствор);

б) дозой и концентрацией токсиканта;

в) видом слизистой оболочки, ее толщиной;

г) продолжительностью контакта;

д) интенсивностью кровоснабжения анатомической структуры;

е) дополнительными факторами (параметры среды, степень наполнения желудка).

Большая площадь поверхности, малая толщина слизистых и хорошее кровоснабжение делают наиболее вероятным проникновение веществ через органы дыхания и стенку тонкой кишки.

Многие токсиканты достаточно быстро всасываются уже в ротовой полости. Эпителий полости рта не представляет собой значительной преграды на пути ксенобиотиков. В резорбции участвуют все отделы ротовой полости. Проникать через слизистые могут лишь вещества, находящиеся в полости рта в молекулярной форме. Поэтому растворы лучше резорбируются, чем взвеси. Раствор обволакивает всю поверхность слизистой ротовой полости, покрывая ее пленкой, которая содержит токсические вещества. Кровь, оттекающая от слизистой полости рта, поступает в верхнюю полую вену, и поэтому вещество попадает непосредственно в сердце, в малый круг кровообращения, а затем и в общий кровоток. В отличие от других способов проникновения через слизистые желудочно-кишечного тракта, при резорбции в ротовой полости всосавшиеся токсиканты распределяются в организме, минуя печень, что влияет на биологическую активность быстро разрушающихся соединений.

В основе резорбции веществ в желудке – механизмы простой диффузии. Фактор, определяющий особенности желудка, – кислотность желудочного содержимого. Скорость диффузии определяется коэффициентом распределения веществ в системе масло/вода. Жирорастворимые (или растворимые в неполярных органических растворителях) соединения достаточно легко проникают через слизистую желудка в кровь.

Особенностью резорбции в желудке является то, что она осуществляется из среды с низким значением рН. В этой связи эпителий слизистой формирует своего рода липидный барьер между водными фазами: кислой (кислотность желудочного сока примерно равна 1) и щелочной (рН крови равен 7,4). Этот барьер токсиканты могут преодолеть лишь в форме незаряженных молекул. Многие соединения не способны к диссоциации в водных растворах (неэлектролиты), их молекулы не несут заряда, и они легко проходят через слизистую желудка (дихлорэтан, четыреххлористый углерод). Сильные кислоты и щелочи (серная, соляная, азотная кислоты, NaOH, KOH) в любом растворе полностью диссоциированы и потому переходят в кровь лишь в случае разрушения слизистой оболочки (химический ожог).

Для слабых кислот кислая среда способствует превращению вещества в неионизированную форму, для слабых оснований низкие значения рН (высокие концентрации водородных ионов в среде) способствуют превращению веществ в ионизированную форму.

Неионизированные молекулы более липофильны, они легче проникают через биологический барьер. Поэтому в желудке лучше абсорбируются слабые кислоты.

Необходимое условие резорбции вещества в желудке – его растворимость в желудочном соке. Поэтому не растворимые в воде вещества в желудке не всасываются. Взвеси химических соединений перед всасыванием должны перейти в раствор. Поскольку время нахождения в желудке ограниченно, взвеси действуют слабее, чем растворы того же вещества.

Если токсикант поступает в желудок с пищей, возможно взаимодействие с ее компонентами: растворение в жирах и воде, абсорбция белками. Величина концентрации ксенобиотика при этом снижается, уменьшается и скорость диффузии в кровь. Из пустого желудка вещества всасываются лучше, чем из наполненного.

Резорбция в кишечнике. Кишечник – одно из основных мест всасывания химических веществ. Здесь действует механизм пассивной диффузии веществ через эпителий. Пассивная диффузия в кишечнике – это дозо-зависимый процесс. При увеличении содержания токсиканта в кишечнике увеличивается и скорость его всасывания. Через слизистые кишечника проникают ионы слабых кислот и оснований, что обусловлено диффузией их через поры биологических мембран.

Скорость диффузии веществ через слизистую оболочку тонкой кишки пропорциональна величине коэффициента распределения в системе масло/вода. Вещества, не растворимые в липидах, даже в форме незаряженных молекул не проникают через слизистую кишечника. Так, ксилоза – низкомолекулярное соединение, относящееся к группе неэлектролитов, но не растворимое в липидах, – практически не поступает во внутренние среды организма при приеме через рот. Токсические вещества, хорошо растворяющиеся в жирах, не всасываются в кишечнике из-за их низкой растворимости в воде. С увеличением молекулярной массы проникновение химических соединений через слизистую кишечника уменьшается. Трехвалентные ионы вообще не всасываются в кишечнике.

С наивысшей скоростью всасывание происходит в тонкой кишке. Холодные растворы быстрее покидают желудок. В этой связи холодные растворы токсикантов порой оказываются более токсичными, чем теплые. Резорбция в толстой кишке происходит сравнительно медленно. Этому способствует не только меньшая площадь поверхности слизистой этого отдела, но и более низкая концентрация токсикантов в просвете кишки.

Кишечник имеет разветвленную сеть кровеносных сосудов, поэтому вещества, проникающие через слизистую оболочку, быстро уносятся оттекающей кровью. Содержимое толстой кишки может выступать в качестве инертного наполнителя, в который включено вещество и из которого замедляется его резорбция; при этом количество всасывающегося вещества остается неизменным.

Желчные кислоты, обладая свойствами эмульгаторов, способствуют всасыванию жиров. Микрофлора кишечника может вызвать химическую модификацию молекул токсикантов, – напр., способствует восстановлению нитратов до нитритов у грудных детей. Ионы этих нитритов проникают в кровь и вызывают образование метгемоглобина. Кишечная палочка содержит ферменты, под влиянием которых в кишечнике расщепляются глюкурониды. Конъюгаты ксенобиотиков с глюкуроновой кислотой (конечные метаболиты веществ, выделяющиеся в кишечник с желчью) плохо растворимы в жирах и хорошо растворимы в воде соединения. После отщепления глюкуроновой кислоты липофильность отделившихся молекул существенно возрастает, и они приобретают способность к обратной резорбции в кровоток. Этот процесс – основа феномена печеночно-кишечной циркуляции токсиканта.

Резорбция в легких. Кислород и другие газообразные вещества при выдыхании проникают через легкие в кровоток через тонкий капиллярно-альвеолярный барьер. Благоприятное условие всасывания веществ – большая площадь поверхности легких, составляющая у человека в среднем 70 м2. Продвижение газов по дыхательным путям сопряжено с их частичной адсорбцией на поверхности трахеи и бронхов. Чем хуже растворяется вещество в воде, тем глубже оно проникает в легкие. Ингаляционно в организм могут поступать не только газы и пары, но и аэрозоли, которые также достаточно быстро всасываются в кровь.

Процесс проникновения и распределения газов в организме представлен в виде нескольких последовательных этапов:

  • ингалируемый газ поступает через носоглотку и трахеи в альвеолы легких;

  • путем диффузии попадает в кровь и растворяется в ней;

  • током крови разносится по организму;

  • путем диффузии проникает в межклеточную жидкость и клетки тканей.

Для резорбции вдыхаемый газ должен вступить в контакт с альвеолярной поверхностью легких. Альвеолы расположены глубоко в легочной ткани, поэтому путем простой диффузии газ не сможет быстро преодолеть расстояние от полости носа или ротового отверстия до их стенок. У человека и других позвоночных, дышащих легкими, есть механизм, с помощью которого осуществляется механическое перемешивание (конвекция) газов в дыхательных путях и легких и обеспечивается постоянный обмен газами между внешней средой и организмом. Этот механизм вентиляции легких – последовательно сменяющие друг друга акты вдоха и выдоха.

Вентиляция легких обеспечивает быструю доставку газа из окружающей среды к поверхности альвеолярных мембран. Одновременно с вентиляцией легких осуществляются растворение газа в стенке альвеолы, диффузия его в кровь, конвекция в кровяном русле, диффузия в ткани. При снижении парциального давления газа в альвеолярном воздухе относительно крови газ из организма устремляется в просвет альвеол и удаляется во внешнюю среду. С помощью форсированной вентиляции легких можно быстро снизить концентрацию газообразного вещества в крови и тканях. Эту возможность используют для помощи отравленным газообразными или летучими веществами, вводя им карбоген (воздух с повышенным содержанием углекислого газа), который стимулирует вентиляцию легких, воздействуя на дыхательный центр головного мозга.

Из альвеолы в кровоток газ переходит посредством диффузии. При этом молекула соединения перемещается из газообразной среды в жидкую фазу. Поступление вещества зависит от следующих факторов: растворимости газа в крови; градиента концентрации газа между альвеолярным воздухом и кровью; интенсивности кровотока и состояния легочной ткани.

Растворимость в крови отличается от растворимости в воде, что связано с наличием растворенных в плазме крови ее составных частей (соли, липиды, углеводы, белки) и форменных элементов (лейкоциты, эритроциты). Повышение температуры снижает растворимость газов в жидкостях. Количество газа, растворенного в жидкости, всегда пропорционально величине его парциального давления.

При резорбции газов в кровь большую роль играет интенсивность легочного кровотока. Она идентична минутному объему сердечного выброса. Чем выше минутный объем, тем больше крови в единицу времени попадает в альвеолярные капилляры, тем больше газа уносится оттекающей от легких кровью и переносится к тканям, тем быстрее устанавливается равновесие в системе распределения газа между средой и тканями. Стенка капилляра в норме не представляет собой существенного препятствия для диффундирующих газов. Проникновение газов в кровь затруднено только в патологически измененных легких (отек, клеточная инфильтрация альвеолярно-капиллярного барьера).

Кровь, насыщенная в легких газом, распространяется по организму. Вследствие более высокого содержания в крови молекулы газа диффундируют в ткани. Кровь, освободившаяся от газа, возвращается к легким. Этот процесс повторяется, пока парциальное давление газа в тканях не выравняется с давлением в крови, а давление в крови – с давлением в алвеолярном воздухе (состояние равновесия).

Диффузия газов в ткани определяется: растворимостью газов в тканях, разницей концентрации газа в крови и тканях и интенсивностью кровоснабжения тканей. Эпителий дыхательного тракта и стенки капиллярного русла обладают проницаемостью пористой мембраны. Поэтому жирорастворимые вещества резорбируются быстро, а растворимые в воде – в зависимости от размеров их молекул. Насыщение веществ, проникающих через альвеолярно-капиллярный барьер, не наступает. Через барьер проникают даже крупные белковые молекулы, – напр., инсулина, ботулотоксина.

Проникновение токсикантов через слизистую глаз определяется физико-химическими свойствами вещества (растворимостью в липидах и воде, зарядом и размерами молекулы).

Липидный барьер роговицы глаза представляет собой тонкую структуру многослойного плоского эпителия, покрытого снаружи роговым слоем. Через этот барьер легко проникают жирорастворимые вещества и даже растворимые в воде соединения. При попадании токсиканта на роговицу большая его часть смывается слезами и распространяется по поверхности склеры и конъюнктивы глаз. Около 50% нанесенного на роговицу вещества удаляется в течение 30 сек., и более 85% – в течение 3-6 мин.

Резорбция из тканей. При действии веществ на раневые поверхности или введении в ткань (напр., подкожно или внутримышечно) возможно их поступление либо непосредственно в кровь, либо сперва в ткани, а уже затем в кровь. При этом в ткань могут проникать высокомолекулярные (белковые), водорастворимые и даже ионизированные молекулы. Создающийся градиент концентрации токсиканта между местом аппликации, окружающей тканью и кровью – движущая сила резорбции вещества в кровь и внутренние среды организма. Скорость резорбции определяется свойствами тканей и токсических веществ.

Свойства тканей. Стенка капилляра представляет собой пористую мембрану. Ее толщина в различных тканях колеблется от 0,1 до 1 мкм. Для капилляров большинства тканей человека характерны поры диаметром около 2 нм. Поверхность, занятая порами, составляет около 0,1% площади капиллярного русла. Поры представляют собой промежутки между эндотелиальными клетками. Поры делают мембрану капилляра проницаемой для водорастворимых веществ (в ограниченном количестве встречаются поры и с большим диаметром – до 80 нм). Кроме того, возможен перенос веществ через стенку капилляра через механизм пиноцитоза (образование везикул на мембране рецептора).

Стенки капилляров мышц млекопитающих имеют поры диаметром 3-4 нм, поэтому они непроницаемы для гемоглобина (r = 3,2 нм) и сывороточных альбуминов (r = 3,5 нм), но проницаемы для таких веществ как инулин (r = 1,5 нм) и миоглобин (r = 2 нм). В этой связи проникновение очень многих ксенобиотиков в кровь возможно при их введении в мышцы.

Капиллярная и лимфатическая системы. Сеть капилляров и лимфатических сосудов хорошо развита в подкожной клетчатке и в межмышечной соединительной ткани. Площадь поверхности капиллярного русла в объеме тканей оценивается по-разному. Для мышц ее величина составляет 7000-80000 см2/100 г ткани. Степень развития капиллярной сети ограничивает скорость резорбции ксенобиотика в ткани.

Время пребывания крови в капиллярах в процессе кровообращения составляет примерно 25 сек., в то время как оборот объема циркулирующей крови реализуется за 1 мин. Это считают причиной того, что степень резорбции вещества из ткани в кровь пропорциональна степени вазкуляризации тканей. Резорбция веществ из подкожной клетчатки в основном осуществляется через капилляры и в значительно меньшей степени – через лимфатические сосуды.

Для кровоснабжения тканей имеют значение процент раскрытых, функционирующих капилляров, а также величина давления крови в тканях. Интенсивность кровотока зависит от сердечной деятельности, а в тканях она регулируется вазоактивными факторами. Эндогенные регуляторы – адреналин, норадреналин, ацетилхолин, серотонин, оксид азота, эндотелий – зависимые релаксирующие факторы, простогландины влияют на скорость кровотока в ткани и следовательно на резорбцию токсических веществ. Охлаждение конечности замедляют в ней кровоток, нагревание – ускоряет его.

Свойства токсиканта. Поры капилляров имеют диаметр 3-4 нм и через них могут проникать большие водорастворимые молекулы. Даже такие макромолекулы как инсулин (МВ 5733), тетанотоксин, ботулотоксин всасываются в тканях. Молекулярная масса большинства известных высокотоксичных веществ составляет около 100-500. Поэтому их проникновение (пенетрация) через стенки капилляров не лимитирована диаметром пор.

Диффузионная возможность капилляров для низкомолекулярных веществ в 40-120 раз превышает их предельную концентрацию в плазме крови. В этой связи многие токсичные ксенобиотики легко всасываются в кровь при непосредственном введении их в ткани (подкожно или внутримышечно).

Высокомолекулярное вещество инулин (МВ 5500) используют в эксперименте для изучения закономерностей резорбции веществ в тканях. Так, установлены известные ограничения проникновения веществ через стенку капилляров мышц. При диаметре молекулы в 1/5 диаметра поры скорость диффузии веществ через капилляр составляет 50% расчетной.

Жирорастворимые соединения хорошо резорбируются в тканях, поскольку клетки эндотелия не являются для них барьером, и следовательно поверхность всасывания для них примерно в 1000 раз больше, чем для водорастворимых веществ, проникающих в кровяное русло только через поры биологических мембран.

Для количественной характеристики способности веществ проникать в организм тем или иным путем используют разные подходы. В эксперименте проблема может быть решена путем умерщвления животных в различные периоды после введения токсических веществ и определения его содержания в различных органах и тканях. Другой метод – определение суммарного количества вещества и его метаболитов в моче и кале за некоторый промежуток времени и сравнение полученного результата с количеством введенного подопытным животным токсиканта.

Контрольные вопросы

1. Назовите пути поступления токсических химических веществ в организм.

2. Назовите особенности поступления химических веществ в организм через кожные покровы.

3. Охарактеризуйте особенности поступления химических веществ в организм через слизистую желудка.

4. Охарактеризуйте особенности поступления химических веществ в организм через слизистые кишечника.

5. Охарактеризуйте особенности поступления химических токсических веществ в организм через легкие.

6. Какие параметры определяют диффузию газов в тканях организма.

7. Каковы особенности проникновения токсикантов организм через органы зрения?

8. Какие свойства тканей организма влияют на токсические свойства химических веществ?

9. Охарактеризуйте зависимость токсического действия химических веществ от структурного строения кровеносной и лимфатической систем.

10. Перечислите свойства токсических веществ при их поступлении в ткани организма.

написать администратору сайта