Навигация по странице:
|
5-Закалка. Работа 5. Термическая обработка углеродистой стали цель работы
Работа №5. ТЕРМИЧЕСКАЯ ОБРАБОТКА УГЛЕРОДИСТОЙ СТАЛИ
Цель работы. Усвоение основных положений теории термической обработки металлов и сплавов. Изучение влияния скорости охлаждения на структуру и механические свойства стали при его термообработке: закалке, отпуске, нормализации и отпуске. Освоение экспериментального оборудования по термической обработке металла.
Общие сведения. Диаграмма состояния показывает фазовый состав сплавов в зависимости от температуры и концентрации компонентов. Она позволяет качественно характеризовать многие физико-химические, механические и технологические свойства сплавов, определить, при каких условиях можно получить ту или иную желаемую структуру с определенным комплексом свойств. Диаграммы состояния определяются по кривым охлаждения сплавов в условиях равновесия, т.е. при бесконечно медленных скоростях изменения температуры..
Однако практика термической обработки сталкивается с неравновесными процессами. При этом одними из важнейших становятся временной фактор и направление изменения температуры металла. Нагревая до определенной температуры, и затем охлаждая стальные детали и изделия, можно изменить структуру стали (не меняя химического состава) и тем самым получить различные комплексы свойств, требующиеся для работы различных деталей.
Термической обработкой называются процессы, связанные с нагревом и охлаждением, вызывающие изменение внутреннего строения, и в связи с этим изменения физических, механических и других свойств.
Основными видами термообработки являются закалка, отжиг, нормализация и отпуск.
Сущность структурных изменений вы стали при термической обработке
Термическая обработка – это сначала нагрев до 800-900С, затем или быстрое или медленное охлаждение, результат – твердая закаленная структура в первом случае или мягкая легкообрабатываемая структура во втором. Почему это происходит?
Во-первых, из-за полиморфизма у железа (т.е. существования разных типов кристаллических решеток при разных температурах), во-вторых, из-за того, что изменения в точности по диаграмме состояния могут происходить только при медленном изменении температуры. При быстром охлаждении образуются структуры, которых нет на равновесной диаграмме состояния.
Рис. 1. Равновесная (метастабильная) диаграмма состояния системы Fe+C.
При нагреве выше линии GSE сталь полностью переходит в аустенитное состояние с ГЦК- кристаллической решеткой. При достаточно медленном охлаждении ниже GSE происходит перлитное превращение по диффузному механизму (с перемещением атомов различных элементов) – аустенит распадается на феррит (ОЦК – решетка) и цементит (химическое соединение Fe3C), а также сложную пластинчатую структуру из феррита и цементита – перлит согласно равновесной диаграмме состояния (рис.1).
Необходимо учитывать, что предельное содержание углерода в феррите не превышает 0,02%, тогда как в аустените может раствориться весь углерод (в стали содержание углерода до 2,14%). При резком изменении температуры атомы углерода не успевают уйти с места расположения в аустенитном растворе, в котором они были, в то время как железо стремится перекристаллизоваться в ОЦК решетку феррита. Излишнее количество углерода препятствует этому, что вызывает большие напряжения внутри сплава. Возрастание напряжения приводит к корпоративному сдвигу (движению всей плоскости кристалла) в решетке. Это мартенситное превращение. Образуется деформированная ОЦК- решетка мартенсита, которую можно рассматривать как ОЦТ (объемноцентрированную тригональную – с углами, не равными 90º).
Мартенсит ( М ) – пересыщенный твердый раствор углерода в феррите. Мартенсит – очень твердая и прочная структура. Получение мартенсита – цель закалки. Однако мартенсит обладает небольшой вязкостью, т.е. достаточно хрупок.
Рис.2. Диаграмма изотермического распада аустенита.
Здесь Ас1 – критическая температура (температура рекристаллизации, т.е. 727ºС);
Кривая С I – начало распада аустенита;
Кривая С II– конец распада аустенита
Мн– начало мартенситного превращения.
V1 ,V2, … V5 – кривые охлаждения с различными скоростями, самое медленное V1..
При различных скоростях охлаждения из одной и той же стали в результате получаются разные структуры с разными свойствами (рис.2). При медленном охлаждении V1.. – грубопластинчатый перлит, при более быстром V2 – тонкопластинчатый перлит. При увеличении скорости охлаждения получаются структуры такой же пластинчатой « + карбид железа» природы, но с более тонкими пластинами и меньшей зернистостью: сорбит и троостит. Если кривая охлаждения пересекает С-I, но не доходит до С-II (на рис. V3.), то получается промежуточная игольчатая структура – бейнит.
При скорости охлаждения V4 - линия идет касательно С-кривой - II. Здесь V4 – критическая скорость закалки Vкр,. При скоростях охлаждения выше Vкр получается мартенсит, т.е. критическая скорость закалки – это минимальная скорость охлаждения, когда еще можно достичь закалки. Если охлаждение происходит медленнее, то реализуется диффузионный механизм перлитного превращения аустенита.
Характеристика основных структур, получаемых при термообработке,
и их свойства
Мартенсит (сокращенно М) - пересыщенный твердый раствор углерода в альфа-железе ( -Fe) той же концентрации, что и у исходного аустенита.
Мартенсит - структура твердая, хрупкая, напряженная, неустойчивая. Твердость мартенсита возрастает с увеличением в нем содержания углерода,
например: при С = 0,1% твердость М HRC 30 (HB 286);
при C = 0,7%, М HRC 65 (HB 671).
Мартенсит имеет наибольший удельный объем (т.е. наименьшую плотность), зависящий от содержания углерода (максимальный у эвтектоидной стали). Увеличение удельного объема вызывает внутренние напряжения, приводящие к деформациям или даже разрушению (закалочным деформациям и трещинам).
Троостит, сорбит, перлит (Т, С и П) - образующиеся из аустенита структуры, являются феррито - цементитными (Ф+Ц) смесями, имеющими сходное пластинчатое строение. Эти структуры отличаются друг от друга степенью дисперсности (измельченностью) пластинок цементита и феррита. Более тонкое строение (дисперсность) у троостита, более грубое - у перлита. Увеличение дисперсности повышает прочностные характеристики и твердость, но уменьшает пластические свойства стали.
Твердость троостита Т 350 - 500 НВ;
Твердость сорбита С 250 - 350 НВ;
Твердость перлита П 150 - 250 НВ;
В сталях на практике не бывает четкой границы между этими структурами.
Основные операции термической обработки
Термическая обработка (сокращенно ТО) подразделяется на предварительную и окончательную.
Предварительная обработка - отжиг и нормализация, применяется часто при подготовке структуры стали для последующей обработки (давлением, резанием и т.д.)
В качестве окончательной обработки применяют, как правило, закалку с последующим отпуском.
Иногда отжиг и, чаще, нормализация могут быть окончательной операцией, если эти операции дают нужные механические свойства по условиям работы детали.
Режим любой ТО можно представить схематически в координатах “температура (T) - время ( t )” (рис.4).
Рис. 3. Температуры нагрева при термической обработке стали
Для большинства марок стали численное значение температуры нагрева Tн определяется положением критических точек Aс1 (т.е. по линии PSK) и Aс3 (линия GS) :
для доэвтектоидных сталей Tн = Aс3 + (30 …50);
для заэвтектоидных сталей Tн = Aс1+ (30 …50)
Нагрев ниже A с3 для доэвтектоидных сталей нежелателен, т.к. сохраняется часть феррита.
Для заэвтектоидных сталей целесообразен нагрев ниже Aст (линия SЕ), т.к. при этом сохраняется цементит, повышающий твердость и износостойкость стали. Нагрев выше Aст , являясь менее экономичным, дает после закалки крупноигольчатый мартенсит без цементита, с повышенным количеством остаточного аустенита - структуры менее твердой, но хрупкую за счет грубой структуры мартенсита.
T Закалка, отжиг или
нормализация
Тн
Aс1 , Aс3 или Aст Отпуск:
Tвыс высокий
Tср средний
Тниз низкий
t , время
Структуры: М Т С П М структуры отпуска
Рис.4. Схема термической обработки
Tн - температура нагрева стали для закалки, отжига или нормализации;
Tвыс ,Tср ,Tниз - температуры нагрева закаленной стали для отпуска.
Нагрев производится обычно в газовой среде (атмосфера печи), реже в расплавленных солях, металлах.
Продолжительность нагрева складывается из времени нагрева детали до нужной температуры и времени выдержки .
Время выдержки зависит от многих факторов. Обычно для углеродистой стали это время исчисляется по максимальному сечению детали: 1 - 1,5 мин/мм по размеру наибольшего сечения. Например, если продолговатая деталь имеет толщину в самом большом поперечном сечении 10 мм, то его нужно прогревать 10 - 15 мин.
Отжиг - термическая операция, заключающаяся в нагреве металла до температур выше линии GSK в диаграмме системы "железо-углерод" ( то есть выше Ас1), обеспечивающих нужные превращения, выдержке при этих температурах и медленном охлаждении (обычно вместе с печью или в песке). После отжига получаются равновесные структуры: Ф+П; П; П+ Ц. В зависимости от температуры нагрева отжиг имеет несколько разновидностей, применяющихся при определенных условиях. Полный отжиг достигается нагревом выше верхних критических температур, при неполном отжиге деталь нагревают выше нижних критических температур.
Нормализация - термическая операция, заключающаяся в нагреве стали выше линий GS и SE, выдержке при этих температурах и охлаждение на воздухе. Назначение нормализации:
а) для доэвтектоидных сталей - получение однородной мелкозернистой структуры (иногда вместо отжига в малоуглеродистых сталях);
б) в заэвтектоидных сталях - уничтожение вредной цементитной сетки.
Закалка - термическая операция, заключающаяся в нагреве стали до температур выше линии GSK, выдержке при этих температурах и охлаждении со скоростью, обеспечивающей получение мартенсита..
Минимальная скорость охлаждения, необходимая для переохлаждения аустенита до мартенситного превращения, называется критической скоростью закалки.
При охлаждении со скоростью ниже критической образуются ферритно-цементитные смеси.
НВ
700
М а р т е н с и т
600
Т р о о с т о м а р т е н с и т
закалки отпуска
500
Т р о о с т и т
закалки отпуска
400
С о р б и т
закалки отпуска
300
П е р л и т
200
Способ охлаждения Температуры нагрева для отпуска
печь песок воздух масло вода 200 300 400 500 600 700С
Рис.5. Диаграмма закономерностей процессов закалки и отпуска
.
Скорость охлаждения обеспечивается определенной охлаждающей средой. В качестве закалочных сред обычно применяют воду, водные растворы солей, щелочей, минеральные масла. Углеродистые стали чаще закаливают в воде.
Назначение закалки - получение высокой твердости.
Отпуск - термическая операция, заключающаяся в нагреве закаленной стали до температур ниже линии PSK, выдержке при этих температурах и охлаждении.
Назначение отпуска - снятие внутренних напряжений и получение необходимых свойств путем изменения структуры (повышение пластичности и вязкости).
Отпуск имеет важное практическое значение. Именно в процессе отпуска стальные изделия приобретают свойства, определяющие их поведение в эксплуатации. Температура отпуска обусловливается требованиями механических свойств детали.
Низкотемпературный (низкий) отпуск проводят с нагревом до 250С. Цель - снижение внутренних напряжений. Мартенсит закалки переходит в мартенсит отпуска. Высокая твердость и износостойкость сохраняются. Сохраняется также низкая ударная вязкость. Данному отпуску подвергается металлорежущий инструмент.
Среднетемпературный (средний) отпуск проводится при температурах 350-500С. Структура мартенсита переходит в троостит отпуска. Такой отпуск обеспечивает наиболее высокий предел упругости и несколько повышает вязкость. Такой отпуск применяется для рессор, пружин, а также инструмента, испытывающего ударные нагрузки.
Высокотемпературный (высокий) отпуск проводят при температуре 500-680С. Структура мартенсита закалки переходит в сорбит отпуска. После такого отпуска почти полностью снимаются внутренние напряжения, значительно повышается ударная вязкость. Прочность и твердость при этом снижаются, но остаются более высокими, чем при нормализации. Высокий отпуск создает наилучшее сочетание прочности и вязкости стали.
ТО, состоящая из закалки и высокого отпуска, называется улучшением.
Продолжительность отпуска зависит от конкретных изделий. Обычно в течение 1,5 часов напряжения снижаются до минимальной величины, соответствующей данной температуре отпуска. Некоторым изделиям (измерительный инструмент) делают более продолжительный отпуск.
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
1. Приготовить 4 образца углеродистой стали, зачистить напильником; отшлифовать.
2. Подготовить таблицу:
Таблица 1
№
образца
|
Температура
нагрева, ТС
|
Время выдержки, мин
|
Среда
охлаждения
|
Твердость
HRC
|
1
|
|
|
вода
|
|
2
|
|
|
масло
|
|
3
|
|
|
воздух
|
|
4
|
|
|
песок
|
|
3. Приготовить ванны для охлаждения:
вода и масло должны иметь уровень, обеспечивающий слой жидкости поверх образцов не менее 1 см;
подготовить место для воздушного охлаждения, положить керамическую плитку - поддон;
приготовить клещи (пинцет) и палочку для перемешивания воды;
Включить электропечь Laborterm S3. Поставить программу прогрева печи на 850С и пусть печь держит эту температуру 30 минут.
Для этого во-первых необходимо нажать на нужные кнопки на графическом дисплее, потом ввести на цифровых клавишах требуемое значение величины:
задать температуру нагрева :
нажать на кнопочку у “ Т1 “, заморгает зеленая лампочка у нажатой вами клавиши;
tС
T4
T3
T2
T1
время в мин
time time time time time time time time time time
start 1a 1b 2a 2b 3a 3b 4a 4b 4c
затем набрать на цифровом индикаторе “ 850”, индикатор покажет “ 850”.
задать время выдержки печи на температуре нагрева
нажать кнопочку у “time 1b”, заморгает лампочка у “time 1b”;
набрать на цифровом индикаторе “ 30” , индикатор покажет “00 30”.
нажать на кнопку “ENTER”
нажать на кнопку “START”.
Загорится ровным светом лампочка у “time 1а”, это означает, что печь начала нагреваться с максимальной скоростью до заданной вами температуры.( Если бы задали “time 1а”- время нагрева, то печь старалась бы выдержать определенную скорость нагревания). Цифровой индикатор начинает показывать температуру в камере.
При достижении заданной температуры загорится ровным светом лампочка у “time +-1b”, и после времени выдержки (здесь 30 минут) печь отключится ( или начнет отрабатывать заданную вами температуру “Т2” за указанное по “time 2а” время).
5. При достижении рабочей температуры печи, используя средства индивидуальной защиты, открыть дверцу и поместить образцы в печь, закрыть дверцу;
6. При достижении срока нагрева, определяемого по эмпирической зависимости: 1-1,5 мин на каждый мм по наибольшему сечению материала, вынуть их из печи и как можно быстрее поместить их в приготовленные ванны;
Воду нужно перемешивать приготовленной заранее палочкой.
7. Образцы высушить, почистить, отшлифовать.
8. Определить твердость HRC каждого образца, результаты занести в табл.1.
9. Сделать анализ результатов работы.
10. Подготовить отчет по работе.
11. Подготовиться к коллоквиуму и сдать работу.
Контрольные вопросы. 1. Влияние энергетических факторов на переструктурирование в металле при термообработке; 2. Влияние температуры на концентрацию зародышей кристаллообразования; 3. Диффузионный механизм переструктурирования металлов; 4. Диаграмма состояния железо-карбид железа; 5. Закаливаемые стали. 6. Диаграммы изотермического распада аустенита; 7. Перлитное, аустенитное и мартенситное превращение; 8. Структуры закалки и отпуска; 9.. Влияние термической обработки на свойства стали; 10. Влияние скорости охлаждения на структуру стали; 11.Технология закалки, отжига, нормализации и отпуска.
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
1. Гуляев А.П. Металловедение. - М.: Металлургия, 1986.- 544 с.
2. Лахтин .Материаловедение. - М.:Высшая школа, 1987.- 480 с.
|
|
|