Главная страница
Навигация по странице:

физиология шпоры #. 1. Предмет физиологии и основные понятия функция, механизмы регуляции, внутренняя среда организма, физиологическая и функциональная система. C 1


Скачать 0.74 Mb.
Название 1. Предмет физиологии и основные понятия функция, механизмы регуляции, внутренняя среда организма, физиологическая и функциональная система. C 1
Анкор физиология шпоры #.doc
Дата 12.04.2017
Размер 0.74 Mb.
Формат файла doc
Имя файла физиология шпоры #.doc
Тип Документы
#571
страница 9 из 15
1   ...   5   6   7   8   9   10   11   12   ...   15

1.2. Переход газов через альвеоло-капиллярную мембрану

Переход газов через альвеоло-капиллярную мембрану происходит по законамдиффузии,но при растворении газов в жидкости процесс диффузии резко замедляется. Углекислый газ, например, диффундирует в жидкости примерно в  13000 раз, а кислород — в 300000 раз медленнее, чем в газовой среде. Количество газа, проходящее через ле­гочную мембрану в единицу времени, т.е. скорость диффузии, прямо пропорциональна разнице его парциального давления по обе стороны мембраны и обратно пропорциональна сопротивлению диффузии. Пос­леднее определяется толщиной мембраны и величиной поверхности газообмена, коэффициентом диффузии газа, зависящим от его моле­кулярного веса и температуры, а также коэффициентом растворимости газа в  биологических жидкостях  мембраны.


Направление и интенсивность перехода кислорода из альвеоляр­ного воздуха в кровь легочных микрососудов, а углекислого газа — в обратном направлении определяет разница между парциальным давлением газа в альвеолярном воздухе и его напряжением (парци­альным давлением растворенного газа) в крови. Для кислорода гра­диент давления составляет около 60 мм рт.ст. (парциальное давле­ние в альвеолах 100 мм рт.ст., а напряжение в крови, поступающей в легкие, 40 мм рт.ст.), а для углекислого газа — примерно 6 мм рт.ст. (парциальное давление в альвеолах 40 мм рт.ст., напряжение в притекающей к легким крови  46  мм рт.ст.).

Сопротивление диффузии кислорода в легких создают альвеолярно-капиллярная мембрана, слой плазмы в капиллярах, мембрана эритроцита и слой его протоплазмы. Поэтому общее сопротивление диффузии кислорода в легких слагается из мембранного и внутри-капиллярного компонентов. Биофизической характеристикой прони­цаемости аэрогематического барьера легкихдля респираторных газов является так называемая диффузионная способность легких.Это ко­личество мл газа, проходящее через легочную мембрану в 1 минуту при разнице парциального давления газа по обе стороны мембраны 1 мм рт.ст. У здорового человека в покое диффузионная способ­ность легких для кислорода  равна  20-25  мл мин -1    мм  рт.ст.-1.

Величина диффузионной способности легких зависит от их объема и соответствующей ему площади поверхности газообмена. Этим в значительной мере объясняется тот факт, что величина диффузион­ной способности легких у мужчин обычно больше,чем у женщин, а также то, что величина диффузионной способности легких при за­держке дыхания на глубоком вдохе оказывается большей, чем в устойчивом состоянии на уровне функциональной остаточной ем­кости. За счет гравитационного перераспределения кровотока и объема крови в легочных капиллярах диффузионная способность легких в положении лежа больше, чем в положении сидя, а сидя — больше, чем в положении стоя. С возрастом диффузионная способ­ность легких  снижается.

В венозной крови, притекающей к легким, парциальное давление кислорода равно 40 мм рт. ст. По мере продвижения крови через легочные капилляры она насыщается кислородом. При этом парциальное давление кислорода возрастает до 100 мм рт. ст., а оксигемоглобин до 96%. При продвижении же крови по капиллярам тканей парциальное давление кислорода в ней быстро понижается, и оксигемоглобин расщепляется на кислород и гемоглобин. Кислород изза разности парциального давления переходит в ткани и там участвует в обмене веществ. Поэтому в венозной крови, оттекающей от тканей, оксигемоглобина содержится не 96%, а лишь 66% при парциальном давлении кислорода равном 40 мм рт. ст. Остальные 30% оксигемоглобина распались на кислород и гемоглобин.
Кислородная емкость крови.
Каждые 100 мл крови содержат 20 мл кислорода, т. е. кислородная емкость артериальной крови равна 20 объемным процентам. Разница содержания кислорода в артериальной и венозной крови называется артериовенозной разностью (АВР),
АВР важный показатель интенсивности дыхательных процессов в тканях, свидетельствующий о количестве кислорода, которое отдают тканям каждые 100 мл крови. Если в покое каждые 100 мл крови отдают тканям 6 мл кислорода (из 20 мл), то во время физической работы те же 100 мл крови способны отдать тканям значительно больше кислорода (до 14%).

Обменгазовмежду кровьюитканями осущ-ся также путем диффузии. Артериальная кровь отдает тканям не весь О2. Разность между об.% О2 в притекающей к тканям артериальной крови и оттекающей от них венозной крови наз-ся артерио-венозной разностью по кислороду (7об.%). Эта величина показывает какое кол-во О2 доставляют тканям каждые 100 мл крови. Для того, чтобы установить, какая часть приносимого кровью О2 переходит в ткани, вычисляют коэф. утилизации кислорода. Для его определения делят величину артериовенозной разности на содержание О2 в артериальной крови и умножают на 100. В покое для всего организма КУ = 30-40%, в миокарде, сером в-ве мозга, печени и корковом слое почек 40-60%, при физ.нагрузках КУ кислрода работающими скелетными мышцами и миокардом = 80-90%.

53. Регуляция дыхания. Дыхательный центр. Нервная (рефлекторная) и гуморальная регуляция дыхания. Влияние гипоксии и повышенной концентрации СО2 на легочную вентиляцию.

Какие механизмы регулируют дыхание?
-Дыхательные центры продолговатого мозга и моста мозга.
-Центральные и периферические хеморецепторы.
-Рецепторы легких.
-Дыхательные мышцы.

Внешнее дыхание - одна из важнейших функций организма. Остановка дыхания приводит верную смерть уже через 3-5 мин. Количество кислорода в организме незначительна, поэтому важно, чтобы он постоянно поступал через систему внешнего дыхания. Этим объясняется формирование в процессе эволюции такого механизма регуляции, который бы обеспечил высокую надежность дыхания. В основе регуляциГ дыхания лежит поддержка константного уровня-таких показателей организма, как Рсо8, Ро? и рН. Основным принципом регуляции е саморегуляция, при которой отклонение этих параметров от нормального уровня немедленно вызывает ряд процессов, направленных на их восстановление.
В системе регуляции дыхания можно выделить внутренние и внешние звенья саморегуляции. Внутренние звенья связаны с состоянием крови (буферные свойства, содержание гемоглобина) и сердечно-сосудистой системы, внешние - с механизмами внешнего дыхания. Изменяемыми параметрами системы регуляции внешнего дыхания является глубина и частота дыхательных движений.
Основным регулируемым объектом являются дыхательные мышцы, которые относятся к скелетных мышц. Кроме них, к объекту регуляции дыхания должны быть зачислены гладкие мышцы глотки, трахеи и бронхов, которые влияют на состояние дыхательных путей. Транспорт газов кровью и газообмен в тканях осуществляет сердечно-сосудистая система.

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма регулируются дыхательным центром, расположенным в продолговатом мозге.

В дыхательном центре имеются две группы нейронов:инспираторные и экспираторные.При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.

В верхней части моста головного мозга (варолиев мост) находится пневмотаксический центр, который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III—IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III—XII) грудных сегментов спинного мозга.

Важная роль в регуляции дыхания принадлежит коре больших полушарий. Дыхательный центр находится в состоянии постоянной активности: в нем ритмически возникают импульсы возбуждения. Эти импульсы возникают автоматически. Даже после полного выключения центростремительных путей. Идущих к дыхательному центру. В нем можно зарегистрировать ритмическую активность. Автоматизм дыхательного центра связывают с процессом обмена веществ в нем. Ритмические импульсы передаются из дыхательного центра по центробежным нейронам к дыхательным мышцам и диафрагме. Обеспечивая чередование вдоха и выдоха.Рефлекторнаярегуля ция. При болевом раздражении, при раздражении органов брюшной полости, рецепторов кровеносных сосудов. Кожи, рецепторов дыхательных путей изменение дыхания происходит рефлекторно. При вдыхании паров аммиака, например, раздражаются рецепторы слизистой оболочки носоглотки, что приводит к рефлекторной задержке дыхания. Это важное защитное приспособление, препятствующее попаданию в легкие ядовитых и раздражающих веществ. Особое значение в регуляции дыхания имеют импульсы, идущие от рецепторов дыхательных мышц и от рецепторов самих легких. От них в большей степени зависит глубина вдоха и выдоха. Это происходит так. При вдохе, когда легкие растягиваются, раздражаются рецепторы в их стенках. Импульсы от рецепторов легких по центростремительным волокнам блуждающего возбуждают центр выдоха. В результате дыхательные мышцы расслабляются, грудная клетка опускается, диафрагма принимает вид купола, объем грудной клетки уменьшается и происходит выдох. Выдох, в свою очередь, рефлекторно стимулирует вдох. В регуляции дыхания принимает участие кора головного мозга, обеспечивающая тончайшее приспособление дыхания к потребностям организма в связи с изменениями условий внешней среды и жизнедеятельности организма. Вот примеры влияния коры больших полушарий на дыхание. Человек может на время задержать дыхание, по своему желанию изменить ритм и глубину дыхательных движений. Влияниями коры головного мозга объясняются предстартовые изменения дыхания у спортсменов - значительное углубление и учащение дыхания перед началом соревнования. Возможна выработка условных дыхательных рефлексов. Если к вдыхаемому воздуху добавить 5-7% углекислого газа, который в такой концентрации учащает дыхание, сопровождать вдох стуком метронома или звонком, то через несколько сочетаний один только звонок или стук метронома вызовет учащение дыхания. Гуморальные влияниянадыхательный центр. Большое влияние на состояние дыхательного центра оказывает химический состав крови, в частности ее газовый состав. Накопление углекислого газа в крови вызывает раздражение рецепторов в кровеносных сосудах, несущих кровь к голове, и рефлекторно возбуждает дыхательный центр, подобным образом действуют и другие кислые продукты. Поступающие в кровь, например молочная кислота, содержание которой в крови увеличивается во время мышечной работы.

под влиянием гипоксии включаются компенсаторные физиологические механизмы. Первым их звеном является рефлекторное увеличение легочной вентиляции, обусловленное стимуляцией хеморецепторов синокаротидной и отчасти аортальной зон. Одновременно возрастают частота сердечных сокращений и минутный объем крови. В результате утилизация кислорода при сниженном его парциальном давлении в атмосфере осуществляется за счет уменьшения диффузионных градиентов в газотранспортной системе (рис. 10.43).

Эти реакции несколько улучшают кислородный транспорт в организме, однако они имеют и свою «теневую» сторону. Так, рост вентиляции легких (точнее, их гипервентиляция, ибо продукция СО2 в организме здесь не повышена) сопряжен с избыточным вымыванием СО2 легкими. Сочетание гипоксии с гипокапнией угнетает возбудимость бульбарных хеморецепторов и дыхательного центра, что может вести к появлению периодического дыхания, особенно во время сна. Кроме того, гипокапния вызывает спазм церебральных сосудов и это еще больше ухудшает снабжение мозга кислородом. Наконец, усиленная вентиляция легких требует дополнительного расхода энергии на работу дыхательных мышц.

Зато при длительном проживании в условиях высокогорья возрастает жизненная емкость легких, повышается кислородная емкость крови (за счет увеличения числа эритроцитов и содержания гемоглобина, в том числе фетального, обладающего более высоким сродством к O2), в мышцах становится больше миоглобина, в митохондриях усиливается активность ферментов, обеспечивающих биологическое окисление и гликолиз.

Избыток СО2 и недостаток О2 во вдыхаемом воздухе вызывает увеличение объемной скорости дыхания, благодаря чему парциальное давление О2 и СО2 в артериальной крови почти не изменяется.

54. Функции пищеварительного аппарата. Виды пищеварения. Значение работ И.П.Павлова для изучения регуляции процессов пищеварения. Процессы пищеварения во рту и в желудке. Моторная и секреторная функции желудка.

Пищеваринеием называется процесс физической и хим-ой переработки пищи, в результате которого ста-новится возможным всасываение пита-тельных в-в из пищеварительного тракта, поступление их в крось и лимфу и усвоение организмом.

Физич. обработка пищи состоит в ее размельчении, перемешивании и раст-ворении содержащихся в ней в-в. Химич. изменения пищи происходят под влиянием гидролитических пище-варительных ферментов, вырабатыва-емых секреторными клетками пище-варит-ых желез.

Моторнаф ф-ция – перемешивание и передвижение по желудочно-кишечному тракту пищи за счет сокращения гла-дких мышц стенок желудка и кишеч-ника.

Секреторная ф-ция пищеварит. тракта осущ-ся соответствующими клетками, входящими в состав слюных желез по-лости рта, желез желудка и кишеч-ника, а также поджелудочной железы и печени.

Экскреторная ф-ция играет важную роль в поддержании гомеостаза, из организма выводятся остатки непереваренной пищи и некоторые продукты обмена в-в.

Всасывающая ф-ция – поступление в кровь и лимфу различных в-в из пи-щеварительной системы при помощи фильтрации, диффузии или осмоса.

Переработка принятой пищи начинается в ротовой полости. Здесь происходят ее измельчение, смачивание слюной, анализ вкусовых св-в пищи, начальный гидролиз некоторых пищевых в-в и формирование пищевого комка. После измельчения и перетирания зубами пища подвергается химич. обработке благодаря действию гидролитических ферментов слюны. В полость рта открываются протоки 3 групп слюнных желез: слизистых, серозных и смешанных. Слюна – первый пищеварительный сок, его ферменты амилаза и мальтаза расщепляют углеводы, а фермент лизоцима обладает бактерицидными св-ми.

Ф-ции желудка – депонирование пищи, ее мехническая и хим-ая обработка и постепенная эвакуация пищевого со-держимого через привратник в 12-ти перстную кишку. Хим.обработка осущ-ся желудочным соком. Желудочный сок выделяется многочисленными железами тела желудка, которые состоят из главных, обкладочных и добавочных клеток. Главные клетки секретируют пищеварительные ферменты, обкла-дочные – соляную кислоту и доба-вочне – слизь. Основными ферментами желудочного сока явл-ся протеазы (расщепляют белки) и липазы (рас-щепляют жиры). Желудочный сок имеет кислую реакцию. К протеазам отно-сятся несколько пепсинов, а также желатиназа и химозин. Пепсины рас-щепляют белки до полипептидов. Дальнейший распад их до аминокислот происходит в кишечнике. Липаза желудочного сока расщепляет только эмульгированные жиры (молоко) на глицерин и жирные кислоты.

55. Пищеварение и всасывание в двенадцатиперстной и тонкой кишке (полостное пищеварение). Секреция поджелудочной железы и печени. Пристеночное пищеварение.

В 12-ти перстной кишке пищевые массы подвергаются воздействию кишечного сока, желчи и сока подже-лудочной железы. Кишечный сок, об-разуемый железами слизистой оболо-чки, содержит большое кол-во слизи и фермент пептидазу, расщепляющий белки. Более слабое действие этот сок оказывает на жиры и крахмал. В нем содержится также фермент энте-рокиназа, который активирует трип-синоген поджелудочного сока. Клетки 12-ти перстной кишки вырабатывают гормоны, усиливающие секрецию под-желудочной железы.

Основная масса ткани поджелудочной железы вырабатывает пищеварительный сок, который выводится через проток в полость 12-ти перстной кишки. Под влиянием трипсина и химотрипсина расщепляются белки и высокомолеку-лярные полипептиды до низкомолеку-лярных пептидов и свободных амино-кислот.

Пищевые массы из 12-ти перстной кишки перемещаются в тонкий кишеч-ник, где продолжается их перевари-вание пищеварительными соками, вы-делившимися в 12-ти пер.кишку. Здесь начинает действовать и собст-венный кишечный сок, вырабатываемый железами слизистой оболочки тонкой кишки. В кишечном соке содержится энтерокиназа и набор ферментов, расщепляющих белки, жиры и угле-воды. Пристеночное пищеварение происходит на поверхности микро-ворсинок тонкой кишки. Основные ферменты, участвующие в прист. пи-щевар-ии – амилаза, липаза и про-теазы. Полостное пищевар-е подго-тавливает исходные пищевые субст-раты для пристеночного пищеварения. Моторная деят-ть обеспечивается благодаря сокращению круговой и продольной мускулатуры. Гладкая мускулатура автономна. Сокращение продольных и круговых мышц регули-руется блуждающим и симпатическим нервами.

Клетки печени непрерывно выделяют желчь, которая является одним из важнейших пищеварительных соков. Процесс образования желчи идет непрерывно, а поступление ее в 12-ти перстную кишку – периодически, в основном в связи с приемом пищи. Натощак желчь в кишечник не поступает, она направляется в желчный пузырь, где концентрируется и несколько изменяет состав. В состав желчи входят желчные кислоты, желчные пигменты и др. органические и неорганич-ие в-ва. Желчь повышает активность ферментов поджелудочного и кишечного соков, особенно липазы. Печень, образуя желчь, выполняет не только секреторную, но и экскреторную (выделительную) функцию.
1   ...   5   6   7   8   9   10   11   12   ...   15
написать администратору сайта