Главная страница
Навигация по странице:

лекции по экологии почв. Лекция 1 тема



Скачать 0.8 Mb.
Название Лекция 1 тема
Анкор лекции по экологии почв.doc
Дата 22.04.2017
Размер 0.8 Mb.
Формат файла doc
Имя файла лекции по экологии почв.doc
Тип Лекция
#1757
страница 3 из 5
1   2   3   4   5
ТЕМА:

Экологические функции почв. Биохимическое преобразование верхних слоев литосферы. Трансформация поверхностных вод в грунтовые и участие в формировании речного стока. Регулирование газового режима атмосферы. Экологическая функция почв. Участие почв в формировании геохимического потока элементов.


Почвенный покров образует одну из геофизических оболочек Земли – педосферу. Основные геосферные функции почвы как природного тела обусловлены положением почвы на стыке живой и неживой природы. И главная из них – обеспечение жизни на Земле. Именно в почве укореняются наземные растения, в ней обитают мелкие животные, огромная масса микроорганизмов. В результате почвообразования именно в почве концентрируются жизненно необходимые организмам вода и элементы минерального питания в доступных для них формах химических соединений. Таким образом, почва – условие существования жизни, но одновременно почва – следствие жизни на Земле.


В категорию глобальных функций почв входят функции, реализуемые почвенным покровом в его взаимодействии с литосферой, гидросферой, атмосферой, биосферой в целом и этносферой.


 Глобальные функции почв в биосфере базируются на следующих основополагающих ее качествах. Во-первых, почва служит средой обитания и физической опорой для огромного числа организмов; во-вторых, почва является необходимым, незаменимым звеном и регулятором биогеохимических циклов, практически круговороты всех биогенов осуществляются через почву.


1. Литосферные функции


Проблема литосферных функций почвы на первый взгляд мо­жет показаться неправомочной. Действительно, если влияние почвенного покрова на взаимодействующую с ним атмосферу и гидросферу очевидно в связи с подвижностью и способностью к перемешиванию контактирующих с почвой воздушных и водных масс, то воздействие почвы на каменную оболочку воспринимает­ся как малозначительное. Поэтому не случайно длительное время углубленно изучалась лишь роль литосферы в почвообразовании и были установлены основные особенности почвообразовательно­го процесса на различных исходных субстратах. Однако феномен обратной связи ощутим. Литосфера своими поверхностными слоями не только определяет направле­ние и разнообразие почвообразовательного процесса, но и сама во многих проявлениях и трансформациях зависит от жизни и динамики покрывающей ее тонким слоем почвы (Вернадский В.И., 1960). В первую оче­редь воздействие почвообразования испытывают на себе коры выветривания и осадочная оболочка в целом. Но и другие состав­ляющие литосферы, если брать геологические масштабы време­ни, связаны прямо или чаше всего опосредованно с событиями, реализующимися в поверхностном слое.

Для понимания существа взаимосвязей почвы и литосферы, несомненно, первостепенное значение имеет динамика каменной оболочки. Отмечается большое значение обмена веществом и энер­гией между континентальными сухопутными регионами (главными носителями почвенного покрова) и океаническими бассейнами (Вернадский В.И., 1960).

При этом отмечается особое значение в процессах взаимодействия и обмена веществом между континентами и океаном переходных зон. Проблема взаимодействия почвенной оболочки и литосферы не может исчерпываться только глобальным аспектом, ярким вы­разителем которого оказываются исследования взаимосвязи кон­тинентов и океанов.

Не менее важной самостоятельной стороной проблемы является всестороннее изучение экзогенных геологиче­ских процессов, их переплетений с процессами почвообразования.


1.1. Почва – защитный слой литосферы и фактор развития литосферы

Верхняя часть литосферы, граничащая с гидросферой и воз­душной оболочкой, находится в особых термодинамических и геохимических условиях. Поверхностные горизонты литосферы испытывают постоянное разрушающее воздействие ряда агентов. На континентах особую разрушающую силу несут с собой движу­щиеся воды и ветер, наиболее интенсивно воздействующие на незащищенные почвенным и растительным покровом дневные го­ризонты геологических пород.

Без почвенного слоя поверхность литосферы была бы подвержена мощному фронталь­ному эрозионному воздействию текучих вод. Не менее тяжелые потери возникают от дефляции, приобретающей бурный, затяжной характер при уничтожении почвенно-защитного чехла (Вернадский В.И., 1960).

На Земле в силу мощного проявления экзогенеза каче­ственно иное структурно-динамическое состояние литосферы, которая оказалась гораздо более продвинутой в эволюционном плане. Одна из важнейших причин этого — наличие на нашей планете развитого почвенного покрова.

Благодаря гидросферным функциям почвы реализуются в течение многих миллионов лет влагообороты на Земле, имеющие столь существенное значе­ние в глубоком экзогенном преобразовании каменной оболочки. С циркуляцией воды во внешней области Земли связано функцио­нирование на нашей планете мощного комплекса экзогенных процессов, оказывающих огромное влияние на другие компонен­ты – литосферу, органический мир, вовлечение их в глобальные круговороты.

Значительный вклад вносит почва в эффект сбалансированности развития литосферы – уравновешенность эндогенных и экзогенных факторов, внутренних и внешних источников энергии литосферы и существование процессов возврата в каменную оболочку теряемого ею вещества (Вернадский В.И., 1960).

1.2. Преобразование приповерхностной части литосферы


В биохимическом преобразовании верхнего слоя литосферы почва принимает прямое и косвенное участие. Косвенное влияние заключается в том, что без почвы не было бы активного биохимического преобразования литосферы, потому что в почве обитают организмы, осуществляющие процессы преобразования.































Здесь почва выступает источником органических кислот. При взаимодействии фульвокислот с первичными минералами наряду с разложением последних мог происходить и синтез глиняных минералов, при котором частично фиксируется мобильный магний (см приложение 1).

Кроме кислот, возникающих при гумусообразовании, важными агентами разрушения и изменения минералов литосферы являются попадающие в почву продукты жизнедеятельности обитающих в ней микроорганизмов. В результате совместного действия эти агенты оказываются важнейшими факторами мобилизации хи­мических элементов, законсервированных в кристаллических ре­шетках, которые идут на питание различных живых существ био­сферы (см. приложение 2).
Приложение 1


Минерал


Растворы кислот, 0,005 н.


Общая минера­лизация раство­ров, мг/л


SiO2


А12О3


Fe2O3


СаО


MgO


К2О


Na2O


Нефелин


фк


277


120


53











39


65


гк


416


137


100











30


77


Монтмо­риллонит


фк


97


35


3


7


50


3








гк


85


47


12


13


13


0








Приложение 2


Освобождение SiO2 из минералов под влиянием кислотно-щелочеобразующих микроорганизмов (Аристовская, 1980)



Микроорганизмы


pH


Извлечение SiO2 из различных минералов, мг/л





в исходной среде


в куль­туре


40 сут


70 сут


70 сут











нефелин


плагиоклаз


кварц


Penicillium notatum


6,6


3,1


124,0











6,3


1,9





4,0








4,9


1,9








0,8


Sarcina ureae


7,8


9,6


13,0











6,8


9,5





2,6








5,8


9,5








14,0


Процесс микробиологической деструкции минералов материн­ских пород наглядно проявляется на ранних стадиях почвообра­зования, когда в исходном субстрате еще не накопилось зольных веществ и минералы породы оказываются почти единственным источником питания живых организмов.

Среди агентов преобразования минералов заметную роль могут играть биогенные щелочи, вклад которых в процессы выветрива­ния остается пока слабо изученным. В то же время образование биогенных щелочей – широко распространенный в природе про­цесс, который в отдельных микроочагах может протекать даже в кислых подзолистых почвах. Основным источником биогенных щелочных соединений могут быть соли слабых органических кис­лот и сильных оснований, образующихся при разложении расти­тельных остатков, среди продуктов минерализации которых ока­зываются карбонаты и бикарбонаты. Щелочи образуются также при аммонификации белковых веществ. Они могут накапливаться в почве после внесения навоза и других азотсодержащих соедине­ний, а также при разложении богатых основаниями пород.

В процессах выветривания в щелочных почвах большое значение имеет биогенная сода. Образование микроорганизмами карбона­тов и бикарбонатов при минерализации богатого опада приводит к сильному повышению рН почвенных растворов, что вызывает разрушение алюмосиликатов.

К числу реагентов, образуемых с помощью микробов, относят­ся также сильные восстановители: водород, сероводород, метан и другие, которые, по-видимому, в определенных условиях могут также участвовать в процессах преобразования минерального суб­страта.

Таким образом, биохимический аппарат, которым располагает микрофлора почвы для деструкции минералов, в высшей степени гибок и разнообразен. В зависимости от условий среды может быть использовано то или иное из имеющихся средств для осво­бождения химических элементов из породы.

В результате длительного действия почвенных агентов вывет­ривания и мобилизации вещества земной коры достигается одно из главнейших условий динамического развития и функциониро­вания зоны гипергенеза – образование фонда лабильных соеди­нений и элементов, создающего необходимые предпосылки для различного типа миграции веществ и круговоротов.

Благодаря разрушению литосферных пород возникает оболочка, способствующая поглощению паров, газов, адсорбции элементов и соединений из растворов.


1.3. Почва – источник вещества для формирования пород и полезных ископаемых

Почва является источником для формирования в ней минералов, пород и полезных ископаемых. Осадочная и метафорфическая оболочки образовались при участии вещества, испытавшего воздействие почвообразовательного процесса.


Почвообразование оказывает существенное влияние на торфонакопление и генетически связанное с ним углеобразование. Взаимосвязь торфо- и угленакопления обусловлена прежде всего тем, что и торф и многие виды ископаемых углей — резуль­тат консервации растительных остатков, образовавшихся при совместном влиянии климата, растительности, геологической об­становки и, конечно, почвообразования. Почвенный фактор во многих работах, однако, не упоминается, что также указывает на явный недоучет многообразия роли почв в природных процессах.

Есть основания говорить также и об определенном значении почвенной оболочки Земли для формирования нефти и газа, на­ходящихся в "родственных" связях с углем. В химическом составе угля, нефти и природного газа много общего. Прежде все­го, преобладает углерод и присутствуют водород, кислород, азот, т.е. те элементы, которые являются основой жизни на Земле.


Рассмотренные вопросы вклада почвообразования в формиро­вание горючих полезных ископаемых свидетельствуют о сущест­венном значении еще одного результата взаимодействия почвы с литосферой Земли. Становится ясным, что область влияния поч­венной оболочки не исчерпывается той маломощной пленкой земной коры, в которой она расположена в настоящее время. Если рассматривать геологические масштабы времени в размере эпох и периодов, то перед нами со всей убедительностью пред­стает грандиозное распространение влияния почвенной оболочки на значительную, а возможно и большую, часть литосферы.

В коре выветривания, тесно связанной с почвообразованием, представлены месторождения полезных ископаемых, которые мо­гут образоваться различными путями. В одних случаях происходит высвобождение в результате разрушения породы самородных ме­таллов и устойчивых минералов (золото, платина, серебро, титани­стый жезезняк, касситерит, гранат, алмаз и др.). В других случаях накапливаются вторичные образования (каолины, бентониты, охры и др.) в результате процессов окисления, гидролиза, синтеза и других геохимических реакций. Кроме того, полезные ископае­мые могут образовываться при выпадении соединений из насы­щенных растворов, путем метасоматоза, карстовых явлений и т.п.

Почвообразо­вательные процессы задействованы в том или ином виде в разной степени в создании всех групп осадочных пород: обломочных, гли­нистых, аллитных, железистых, марганцевых, фосфатных, карбо­натных, кремнистых, солей, каустобиолитов. Это проникновение почвообразования в осадочный литогенез обусловлено прежде все­го теснейшей прямой или опосредованной связью почвы с живым веществом Земли.

Оценивая общий вклад почвы в континентальный литогенез, необходимо отметить очевидное влияние тесно взаимосвязанных процессов почво- и корообразования не только на формирование мощных толщ осадочных пород, которые прорабатываются поч­вообразованием по мере их накопления, но и не менее сильное воздействие данных процессов на плотные породы. Эти породы претерпевают интенсивное воздействие почво- и корообразования, одним из важнейших результатов которого оказываются диспергация и растворение вещества, законсервированного в кристалличе­ских решетках, с последующим поступлением значительной части мобилизованного консервативного материала в геохимические потоки в системе континент – океан.


1.4. Аккумуляция энергии Солнца


Участие почв в данном процессе изучено недостаточно, хотя ре­альность этого участия в настоящее время не вызывает сомнения. Особого внимания заслуживает обмен энергией и веществами между разными слоями литосферы. В.И. Вернадский считал, что гранитная оболочка – метаморфизованная и переплавленная, когда-то была на поверхности биосферой суши.


Атом­ные структуры основных минералов зоны гипергенеза по сравне­нию с главными минералами изверженных пород характеризуются повышенными запасами энергии, поскольку они образуются в процессе выветривания (и почвообразования) при эндотермиче­ских реакциях с поглощением солнечной энергии. Это важно, поскольку данные минералы составляют основную массу осадоч­ных пород, которые в областях опускания земной коры попадают в глубокие горизонты планеты. Для этих горизонтов характерны высокие температуры и давление, поэтому вещество, образовав­шееся при почвообразовании и выветривании, перестраивается в атомные системы с меньшей энергоемкостью. Выделяемое при этом тепло стимулирует внутриземные процессы.


Почва также участвует в передаче вещества атмосферы в недра Земли. В процессе почвообразования происходит поглощение га­зов, которые в составе почвенных соединений поступают в оса­дочные породы. Вместе с органическим веществом осадочные породы уносят с собой до­бавочные количества кислорода за счет окислов.

Важна роль почв в фикса­ции атмосферного азота в его глобальном круговороте, отмечая, что поступление азота в состав органических соединений проис­ходит преимущественно в почве. Особенно важное значение имеет связывание почвенно-растительным покровом диоксида углерода с последующим погребением в осадочной оболочке.

Аккумуляция углерода в стратосфере достигает колоссальных величин. Только органического углерода в фанерозойских отло­жениях накоплено более 9 * 1021 г; карбонатного углерода содер­жится в несколько раз больше. Аккумуляция СО2 атмосферы при формировании органического осадочного вещества Земли и кар­бонатных осадочных пород имеет принципиальное значение для поддержания геологической активности планеты и постоянного выделения из недр диоксида углерода и других газов в воздушную оболочку.


2. Гидросферные функции

В настоящее время отсутствует единая общепринятая трактов­ка понятия гидросферы. Связано это в значительной мере с раз­нообразием форм нахождения воды в природе и вычленением в водной оболочке Земли существенно разных составляющих: океа­на, жидких наземных континентальных вод и льда, атмосферных и подземных вод и др. Хотя различные типы вод находятся между собой в генетическом родстве, реальная функциональная связь между ними в каждый момент времени не может рассматриваться как однопорядковая.


То, что мегагидросфера, или планетарная водная оболочка, проникает своей верхней границей в атмосферу, не противоречит классическим представлениям о соотношении геосфер Земли рассматривались как взаимо­проникающие друг в друга.

2.1. Роль в круговороте воды


Перед атмосферными осадками, питающими реки, все другие факторы, за исключени­ем температуры, представляются более чем второстепенными. Однако постепенно стало выясняться существенное значение и других гидрологических факторов: почвы, литологии, рельефа, живого вещества, антропогенных влияний.


Огромно значение в истории воды почвенных растворов, являющихся основным субстратом жизни. Рассматри­вая связи различных форм природной воды, изучение почвенных растворов вскрывает в истории воды гранди­озное явление, связывающее разные воды (морские, речные и дож­девые). Ниже дана схема зависимости почвенных и других вод.

Почва играет роль посред­ника между климатом, речным и подземным стоками. Ни одно явление водного баланса не минует почву. Поэтому необходимо самое пристальное внимание уделять гидрологической роли поч­вы, без чего не могут быть правильно поняты многие гидрологи­ческие явления и процессы.


Говоря о важности учета почвенных гидрологических функций в современных исследованиях, следует прежде всего иметь в виду разнообразие свойств реальных почв и сильное антропогенное изменение многих из них, приводящее к значительной изменчи­вости гидрологических процессов, контролируемых почвой. Особую актуальность приобретают детализация многих гидрологических исследований с учетом данных по динамике почв и дальнейшее развитие гидрологии почв в целом (см приложение 3).

Приложение 3

Глобальные функции почв


Литосферные


Гидросферные


Атмосферные


Общебиосферные


Биохимическое преобразование верхних слоев литосферы


Трансформация поверхностных вод в грунтовые


Поглощение и отражение сол­нечной радиации


Среда обитания, аккумулятор и ис­точник вещества и энергии для орга­низмов суши


Источник ве­щества для об­разования ми­нералов, пород, полезных иско­паемых


Участие в фор­мировании реч­ного стока


Регулирование влагооборота ат­мосферы


Связующее звено биологического и геологического круговоротов, пла­нетарная мембрана


Передача акку­мулированной солнечной энер­гии в глубокие части литосферы


Фактор биопро­дуктивности во­доемов за счет приносимых почвенных сое­динений


Источник твер­дого вещества и микроорганиз­мов, поступаю­щих в атмосферу


Защитный барьер и условие нормаль­ного функциониро­вания биосферы


Защита литосферы от чрезмерной эрозии и условие ее

нормального

развития


Сорбционный

защищающий

от загрязнения

барьер аквато-

рии


Поглощение и

удержание неко-

торых газов от

ухода в космическое пространство; регулирование

газового режима

атмосферы


Фактор биологи-

ческой эволюции


 
1   2   3   4   5
написать администратору сайта