Главная страница
Навигация по странице:

лекции по экологии почв. Лекция 1 тема



Скачать 0.8 Mb.
Название Лекция 1 тема
Анкор лекции по экологии почв.doc
Дата 22.04.2017
Размер 0.8 Mb.
Формат файла doc
Имя файла лекции по экологии почв.doc
Тип Лекция
#1757
страница 4 из 5
1   2   3   4   5



Участие почвы в формировании речного стока и водного баланса имеет многоплановое проявление и определяется рядом факторов, среди которых пер­востепенное значение имеют водно-физические свойства почвы (Ковда В.А., 1989).


Так, есть случаи, когда инфильтрационная и водоудерживающая способности почв изменяются параллельно (одновременно возрастают или уменьшаются). При малых значе­ниях фильтрационных и водоудерживающих показателей основная масса осадков расходуется на поверхностный сток; питание под­земных вод очень слабое, а испарение с поверхности почв отсутст­вует или незначительно (практически нечему испаряться). Пол­ный речной сток почти равен величине атмосферных осадков, но он состоит главным образом из поверхностных (паводочных) вод. В период между паводками реки сильно пересыхают, поскольку питание за счет подземных вод оказывается незначительным. При больших значениях фильтрационных и водоудерживающих показателей почв величины и соотношения элементов водного баланса сильно изменяются. Поверхностный сток уменьшается, испарение увеличивается за счет образовавшихся ресурсов поч­венной влаги, питание рек подземными водами возрастает.

Более широко в природе распространено иное соотношение основных водно-физических свойств почв: при увеличении ин-фильтрационных показателей почв происходит уменьшение их водоудерживающей способности. В этом случае поверхностный сток резко уменьшается, а подземный, напротив, сильно возраста­ет. Испарение достигает максимума при средних (оптимальных) значениях водно-физических свойств почв и мало при их крайних значениях. Полный речной сток изменяется наоборот: он снижает­ся до минимума при средних значениях водно-физических свойств почв и возрастает при крайних значениях. Указан­ные изменения водного баланса рассмотрены для вариантов с одинаковыми атмосферными осадками.

При выявлении основных форм участия почвы в формирова­нии общего речного стока выясняется, что главная форма этого участия – влияние почвы на соотношение грунтового и поверх­ностного питания рек. Именно от почвы зависит, какая часть ат­мосферных осадков поступит с водоразделов в реки в виде поверх­ностного стока, а какая – в виде грунтового, что в значительной мере определяет равномерность питания рек.

Если почвы отличаются хорошей водопроницаемостью и в подстилающей толще имеются рыхлые и трещиноватые породы, являющиеся аккумуляторами влаги, создаются благоприятные ус­ловия для равномерного питания рек. При слабовыраженной впитывающей способности почв активизируется поверхностный сток, что может приводить ко многим нежелательным последст­виям: длительным паводкам в поймах весной и пересыханию рек в засушливый период, недостаточной влагозарядке почв, активи­зации эрозии и др.


На характер стока заметно влияет режим промерзания почв. Сухая промерзшая почва по водопроницаемости мало чем отлича­ется от непромерзшей. В сильно увлажненной промерзшей почве фильтрация снижается из-за закупорки пор кристаллами льда.

Водорегулирующая способность почв также существенно зави­сит от характера произрастающей на ней растительности. Так, структура стока в лесу и на поле очень сильно различается. В лесу он значительно меньше. Это связано прежде всего с тем, что ин­фильтрация влаги в лесных почвах благодаря их благоприятным физическим свойствам в 2-3 раза выше, чем на полях. Поэтому снеговые и дождевые воды хорошо усваиваются почвой в лесу.


Почва в значительной мере определяет и баланс подземных вод. По условиям образования различаются сле­дующие основные типы подземных вод: инфильтрационные, седиментационные (образующиеся в процессе отложения морских осадков), возрожденные и магматические. От почвы зависит образование не только инфильтрационных, но и других вод.

Рассматривая влияние почв на формирование грунтовых вод, необходимо обратить внимание на изменение химического соста­ва атмосферных осадков при прохождении их через почвенный профиль. Почвенный покров, тесно соприкасающийся с водой, играет значительную роль в трансформации состава выпадающих атмосферных осадков. Воз­действие почвы на химический состав природной воды имеет двоякий характер: во-первых, формирующий первичный состав фильтрующихся через нее атмосферных осадков; во-вторых, метаморфизирующий, при котором происходит качественное изме­нение ионного и газового состава воды, взаимодействующей в дальнейшем с почвой. При этом в обоих случаях химический со­став воды полностью зависит от характера почвы. Если вода фильтруется через бедные солями торфянисто-тундровые почвы, то она обогащается большим количеством органических веществ и лишь в очень малом — солями. Близкая к этому картина у подзо­листых и супесчаных почв. Значительно больше обогащают солями воду черноземные и каштановые почвы, не говоря уже о солон­цеватых (Ковда В.А., 1989).

Изменение газового состава атмосферных осадков при про­хождении их через почву связано прежде всего с тем, что в ней идут процессы окисления органических веществ, вызывающих расход кислорода и выделение углекислого газа, содержание кото­рого в почвенном воздухе может достигать нескольких процентов.


2.2. Почва – фактор биопродуктивности водоемов


Эта функция является логическим следствием воздействия поч­венного покрова на химический состав поверхностных и грунтовых вод, питающих реки, а через них и на другие акватории, в том числе моря и океаны.

В результате привноса почвенных соединений водоемы полу­чают большие количества биофильных макро- и микроэлементов, а также гумуса (см. приложение 4).


Соединения, поступившие с континентов в конечные водоемы стока, активно вовлекаются в продукционный процесс водных экосистем и в биохимические циклы. По подсчетам  до 95% кальция, 50% магния и 30% калия, мобили­зованных в почвах и корах выветривания при разрушении пер­вичных пород на водоразделах, извлекаются из растворов при их попадании в моря и океаны, причем это извлечение происходит главным образом при участии организмов. Активно извлекаются, кроме того, кремний, фосфор и другие элементы.

Приложение 4

Внешний годовой круговорот суммы ионов основного солевого состава вод Мирового океана (109 т) (по В.Н. Иваненкову и O.K. Бордовскому)



Составляющие круговорота


Поступление


Удаление


Ионный сток

речной

пресных подземных вод

при таянии антарктических и арктических льдов материкового происхождения


3,1

1,2

0,003


-

-

-


Поступление солей при:

растворении взвесей речного стока растворении частиц пыли из атмосферы растворении донных осадков десорбционных и диффузионных процессах

растворении вулканических и поствулканических продуктов


0,2

0,05

0,2

0,1
0,05


-

-

-

-
-


Вынос солей на сушу при испарении океани­ческих вод





0,5


Осаждение и коагуляция солей





2,6


Осаждение солей при испарении морской воды в полуизолированньгх морских лагунах





0,6


Сорбция ионов донными осадками и взвесями





1,2



Говоря о важном значении соединений, поступающих с водо­разделов, в формировании биологической продукции водоемов, необходимо отметить следующее. В условиях слабо измененных человеческой деятельностью регионов большая часть веществ, растворенных в водах, в основном прошла через почво- и корообразование до того, как влилась в геохимическую миграцию в направлении к океану или внутриматериковым впадинам, т.е. эти вещества поступили в водоемы из природных геохимических по­токов и формы этих соединений сформировались в результате ес­тественных процессов (Ковда В.А., 1989).


Современные почвы регионов интенсивного антропогенного воздействия стали во многих случаях иначе или даже принципи­ально по-другому влиять на продукционный процесс в водоемах. Если в доиндустриальный период почвы выступали в основном как фактор положительного воздействия на продукционный про­цесс в аквасистемах, то в техногенный этап развития общества ситуация изменилась. Соединения, поступающие в водоемы из почв, в первую очередь освоенных, стали весьма часто негативно воздействовать на биологическую продуктивность гидросферы.


2.3. Почва как защитный барьер акваторий


Основное проявление защитной функции почв заключается в том, что почва благодаря своей огромной активной поверхности в состоянии поглощать многие вредные соединения на пути их миграции в водные экосистемы, а также снижать избыточное поступление биофильных элементов. Эта роль почв оказывается исключительно важной, поскольку, например, радиоактивные изотопы из водной среды поглощаются организмами гораздо ак­тивнее, чем из почвы, что может привести к быстрому наруше­нию в них обмена веществ. Коэффициенты накопления боль­шинства изучавшихся радиоизотопов у пресноводных растений достигают десятка тысяч, тогда как у наземных растений они обычно меньше единицы.


Такое резкое снижение поступления элементов в растения из почвы — наглядный пример того, что она представляет собой сильный природный сорбент, благодаря чему оказывается мощ­ным барьером для многих элементов и соединений на пути их миграции в водоемы стока. Сорбционная сила почв настолько ве­лика, что химические элементы могут поглощаться из недонасы-щенных растворов, из которых самостоятельные минералы мно­гих элементов образоваться не могут. Поэтому для ряда редких элементов (рубидия, цезия и др.) сорбция фактически единствен­ный механизм концентрации.

Возможности сорбционной функции почв, к сожалению, не беспредельны. В настоящее время в связи с резко возросшими антропогенными нагрузками она уже во многих случаях не справ­ляется со своими задачами. В результате в речные воды и водо­емы поступают избыточные количества многих соединений (Ковда В.А., 1989).


Почва выполняет также важную роль сорбционного защитного экрана от загрязнения подземных вод. Известны случаи, когда при фильтрации сточных вод и детергентов (очистителей) до 95 % загрязнителей задерживалось в верхнем 15-30-сантиметровом слое почвы, отличающейся зна­чительной величиной удельной поверхности.


3. Влияние почв на атмосферу


Тесная зависимость состава и динамики атмосферы от почвы диктуется в первую очередь их взаимопроникновением через га­зообразную фазу почвы. Другой причиной тесной связи атмосферы и почвы оказывается постоянное физическое воздействие на динамичные нижние слои воздушной оболочки подстилающей поверхности, представленной не только океаном и растительностью, но и поч­венным покровом.

Значимость влияния почвы на атмосферу определяется еще и тем, что, хотя условная внешняя граница атмосферы проходит на высоте около 1000 км, основная ее масса, равная 5,27 * 1018 кг, со­средоточена в относительно тонком приземном слое. Поскольку между различными частями атмосферы существует постоянный обмен веществом и энергией, то результаты взаимо­действия нижних слоев воздушной оболочки с почвой сказыва­ются в той или иной мере на всей атмосфере.


Наиболее разносторонне и постоянно почва взаимодействует с тропосферой, высота которой в разное время года и на разных широтах неодинакова: на полюсах – около 8-10, в умеренных широтах – 9-12, на экваторе – 16-18 км. Воздух в тропосфере не только движется в вертикальном и горизонтальном направле­ниях, но и непрерывно перемешивается. Следовательно, физи­ческие и химические изменения, возникшие в воздушных массах в зоне контакта их с почвенно-растительным покровом, за корот­кое время сказываются на вышележащих слоях (Ковда В.А., 1989).


С точки зрения взаимодействия атмосферы с земной поверх­ностью ее разделяют на нижний пограничный слой и верхний, называемый свободной атмосферой. В пограничном слое проис­ходят суточные изменения метеорологических показателей и дви­жение воздуха в значительной мере зависит от трения о земную поверхность, в том числе о почвенно-растительный покров. В дан­ном слое выделяют нижний приземный слой высотой 50-100 м с ослабленным изменением потоков водяного пара и тепла с высотой.


Почва, вернее почвенная атмосфера как раз является областью, где возможно сохранение древних примитивных организмов, которые остановились в своем развитии. Данное положение нуждается в дальней­шем развитии и при решении проблемы взаимодействия почвы и воздушной оболочки, поскольку выявление и изучение архаич­ных форм жизни, до сих пор сохраняющихся в почве, поможет вскрыть механизм изменения древней атмосферы.

3.1. Почва – фактор формирования газового состава атмосферы


Среди атмосферных функций почвы выделяется ее влияние на формирование газового состава атмосферы. Оно обнаруживается в двух главных формах – опосредованном и прямом воздействии почвы на состав атмосферных газов. Первое определяется прежде всего зависимостью функционирования наземных биоценозов, контролирующих многие параметры атмосферы (содержание кис­лорода, СО2, микрогазов и др.), от свойств почв. Прямое воздей­ствие заключено в самом газообмене между почвой и воздушной оболочкой. Масштабы влияния почвы на газовый состав атмосфе­ры впечатляющи, особенно если рассматривать его в историческом плане


Воз­действие почв и почвообразования на состав атмосферы началось намного раньше возникновения высшей растительности на суше.


При рассмотрении конкретных видов влияния почвы на фор­мирование состава атмосферы отметим, что существуют два отно­сительно самостоятельных аспекта: воздействие почвы на атмосферу в течение истории ее развития и современное влияние почвы на воздушную оболочку (Ковда В.А., 1989).


В настоящее время исследователи полагают, что в истории ат­мосферы выделяются три этапа. Первый приурочен к началу докембрия, когда существовала первичная ат­мосфера и стала формироваться вторичная воздушная оболочка. Первичная атмосфера, по-видимому, образовалась из газово-пылевого облака – источника вещества для построения Солнечной системы. Вторичная атмосфера возникла из газов, попавших в нее в результате дегазации верхней мантии и земной коры. Она состояла в основном из углекислого газа и паров воды, а также небольшого количества азота и водорода (Гиляров М.С., 1985,).
Таким образом, говоря об общем значении микроорганизмов в биологизации приповерхностных геосфер Земли и изменении состава ее атмосферы, необходимо подчеркнуть, что большой вклад в указанные процессы микроскопических форм жизни во многом был обусловлен их тесной связью с почвой и педогенными телами (в определенных пространственных интервалах). Есть все основания полагать, что эта связь имеет такой же возраст, как у наиболее древних геологических отложений, испытавших воздейст­вие живого вещества. Поэтому, рассматривая факторы трансфор­мации атмосферы в древний, дофанерозойский этап ее развития, надо включить в число этих факторов не только микроорганизмы, но и почвы (Почва как память…, 2008).


3.2. Почва – регулятор газового состава атмосферы


Современная атмосфера, возникшая в ходе длительного развития Земли, не находится в стабильном состоянии по газовому составу. Несмотря на выровненность соотношения составляющих компо­нентов в различных зонах, атмосфера пребывает в состоянии их непрерывного пространственно-временного изменения, особенно в нижних слоях тропосферы, граничащих с почвенно-растительным покровом. Установлено, что состав тропосферы достаточно сложен и разнообразен (Демкин В.А., 1997).

Значительное воздействие на состав атмосферы во многом обусловлено особыми свойствами почвы, определяющими ее влия­ние на воздушную оболочку. Среди этих свойств прежде всего следует отметить пористость почвы: количество пор в ней состав­ляет 10-60% объема. Благодаря расположению почвы на стыке с атмосферой, пористому сложению и активному продуцированию газов почвенной биотой газообмен между воздухом и почвой происходит интенсивно (см. приложение 5).

Приложение 5

Эмиссия предельных углеводородов почвенным покровом планеты в атмосферу (Минько,1998)



Почва


Площадь, тыс. км2 (% от общей площади поч­венного покрова)


Поток углеводородов за ПБА, 10пг








сн4


с2н6


С3Н


Тундровая зона


6 866,0 (5,2)


3-6


1-3


0,2-0,4


Глеемерзлотные, болотно-мерзлотные, мерзлотно-таежные; кислые и слабокис­лые бореального, умеренного холодного климата; болот­ные и глеетаежные бореаль­ного климата


21 596,0 (16,4)


57-169


9-37


2-13


Нейтральные и слабощелоч­ные суббореального тепло-умеренного климата равнин­ных и горных территорий мира


6 607,7 (5,0)


22—31


11-20


4—7


Тропические и субтропиче­ские леса


25 000,0 (19,0)


-5


0


0


Саванные


23 000,0 (17,4)


-10


0


0


Возделываемые под культутуру риса


1 400,0 (1,1)


31-55


27-47


3__ 4


Непродуктивные и малопро­дуктивные земли: арктиче­ские и песчаные пустыни, земли населенных пунктов, промышленности, транспор­та и нарушенные человеком


25 000,0 (18,2)


0


0


0


Сумма


108 489,7 (82,3)


98-246


48-107


9,2-24,4


Газообмен почвы и атмосферы, основанный на диффузии, а также конвекции, существенно зависит от разности температур почвы и воздуха, влияния ветра, осадков, уровня грунтовых вод и верховодки. Особенно сильно газообмен зависит от увлажненности почвы, снижаясь по мере ее возрастания. При переходе от сильно увлажненной до водонасыщенной почвы скорость газообмена уменьшается в миллион раз (Ковда В.А., 1989).


Существенное воздействие почвы на состав атмосферы обус­ловлено также сильным различием их газовой фазы. Почвенный воздух по ряду показателей отличается в десятки и сотни раз от атмосферного, несмотря на высокоскоростной взаимообмен с ним. Это связано с тем, что продуцирование и потребление газов почвы осуществляются очень быстро в силу интенсивной дея­тельности почвенной биоты (Базилевич Н.И., 1970). По сравнению с атмосферным поч­венный воздух содержит в 10-100 раз больше углекислоты и во много раз меньше кислорода. Различия по азоту несущественные. Почвенный воздух, кроме того, постоянно содержит пары воды (насыщенность влагой близка к 100%) и ряд микрогазов. В нем также имеются летучие органические соединения, которые хотя и содержатся в небольших количествах, но могут иметь большое значение в балансе веществ из-за быстрого круговорота и сильного физиологического действия этих соединений и органического ве­щества почв в целом.


3.3. Почва – источник и приемник твердого вещества и микроорганизмов атмосферы


Пограничное положение почвы среди приповерхностных гео­сфер Земли определяет многообразие ее взаимодействия с каж­дой из них. Существенным во взаимосвязи почвы с атмосферой оказывается их обмен не только газами, но и тонкодисперсным твердым веществом и микроорганизмами, способными при опре­деленных условиях попадать в воздушную оболочку с почвенной поверхности, а затем, спустя определенное время, вновь возвра­щаться на нее, переместившись, как правило, на изрядное рас­стояние.

Главная причина двустороннего движения твердого вещества и микроорганизмов в системе почва-атмосфера заключается в на­личии потоков воздушных масс значительной силы, способных отрывать от горизонтов почв мелкозем (в случае их обнажения) и перемещать его аэральным путем на то или иное расстояние в зависимости от размерности составляющих частиц. Наиболее мелкие частицы способ­ны облетать вокруг Земли (Ковда В.А., 1989).


Попадающие в атмосферу частицы почвенного мелкозема оказы­вают разнообразное воздействие на происходящие в ней процессы. Общая их оценка затруднительна, поскольку она слагается из эф­фектов, имеющих зачастую неоднозначное значение для климата и биосферы. Существует мнение, что наличие некоторого коли­чества пылеватого материала способствует выпадению дождей, поскольку частички пыли оказываются центрами конденсации паров влаги.


3.4. Влияние почвы на энергетический режим и влагооборот атмосферы


Воздействие почвенного покрова на тепловой режим атмосферы определяется прежде всего поглощением и от­ражением почвой солнечной радиации, отчего в значительной мере зависит динамика тепла и влаги в нижних слоях атмосферы. В количественном отношении процессы поглощения-отражения солнечной радиации почвами и материнскими породами могут заметно различаться. Обращает на себя внимание то, что почво­образование изменяет отражательную способность породы. На­пример, имеются данные, что исходные бурые суглинки отражают около 18-19% солнечной радиации, распаханные черноземы на тех же породах – 5-7, подзолы – до 30, солончаки – до 35%.
Таким образом, по сравнению с четвертичными материнскими почвообразующими породами отражательная способность поч­венного покрова более дифференцированна, поскольку она опре­деляется не только свойствами пород, но и свойствами самих почв, зависящими от их генетических особенностей. Пестрота от­ражательной способности почвенного покрова особенно ощутимо сказывается на динамике энергетических показателей атмосферы в связи с широкой распашкой земель, обнажающей поверхность самих почв (Ковда В.А., 1989).


Роль почв в формировании влагооборота в целом достаточно велика. Почва не только способствует увеличению общего коли­чества водяного пара, поступающего в атмосферу, но и посредст­вом местного круговорота выравнивает процесс водообеспечения ландшафтов. Это имеет немаловажное значение, поскольку влаго­перенос с океана на сушу подвержен частым перебоям и резким колебаниям. В то же время на Земле имеется много неустойчивых экосистем, существование которых тесно зависит от особенностей микроклимата в почвенно-растительном ярусе.


4. Общебиосферные функции

Важнейшее значение имеют такие общие биологические функции почв, как уникальность их в качестве среды обитания самых разнообразных живых существ, как связующего звена биологического и геологического круговорота веществ в наземных биогеоценозах, как их биологическая продуктивность, а в агробиоценозах – плодородие. Эти биологические функции почв требуют более обстоятельного рассмотрения (см. приложение 6).

Приложение 6

Экосистемные функции почв


Физические


Химические и физико-химические


Биологические


Информационные


Жизненное пространство


Аккумуляция биофильных элементов, ферментов, биохимической энергии


Среда обитания организмов


Регуляция структуры экосистем


Механическая опора


 

 

 

Сорбция веществ, микроорганизмов


Связующее звено биологического и геологического круговоротов веществ.


Сигнализация изменений состояния экосистем


Аккумуляция влаги


Биологическая продуктивность (плодородие)


Запись и хранение показателей истории экосистем (почва-память)


Защитная экологическая ниша


Деструкция и минерализация органических остатков


 


 


 

Депо семян, эмбрионов, цист


 

Ресинтез органических и минеральных веществ


 


 



Уникальность почвы как среды обитания жизни проявляется в том, что в почве и на почве живет 92% от числа всех известных на Земле видов растений и животных. В одном грамме почвы может находиться до нескольких миллиардов бактерий, сотни метров грибных гифов, сотни тысяч одноклеточных простейших животных, и многие тысячи метров тонких корней и корневых волосков растений.


Такое обилие и разнообразие форм жизни в почве обусловлено тем, что она (почва) представляет собой трехфазную природную систему – состоит из твердой, жидкой и газовой фазы, содержит как минеральные, так и органические вещества, пригодные для питания как автотрофных, так и гетеротрофных организмов. С каждым типом и видом почв связаны определенные и только им свойственные виды сообществ растений и животных (биоценозов).


Становится все более ясным, что сохранять биологическое разнообразие на Земле невозможно без сохранения разнообразия почв, без борьбы с деградацией и с эрозией почв.
Не менее важна вторая общебиологическая функция почв как связующего звена большого геологического и малого биологического круговоротов веществ на Земле. Именно в почвах совершается двусторонний процесс деструкции органических и минеральных веществ, синтезированных растениями и животными, в тоже время – возвращение содержавшихся в них химических элементов вновь в состав живого вещества, в новые циклы жизни. О грандиозности этого процесса можно судить по колоссальной массе веществ, удерживаемых в почвенно-растительном покрове Земли от выноса в океан. Общая масса вовлекаемых в круговорот зольных элементов существенно превышает их величину в речном суммарном годовом ионном стоке в океан (Добровольский Г.В., 1990).


Очень интересным примером вовлечения элементов в биологический круговорот и удержания биофильных элементов в нем от выноса в океан может служить «геохимическая судьба» калия и натрия. Оба элемента содержатся в первичных массивно-кристаллических породах примерно в равных количествах (около 2,5 %), а в океанической воде, куда поступает весь ионный сток с суши, содержание калия в 25 раз меньше, чем натрия. Это явление объясняется не только более прочной фиксацией калия кристаллической решеткой глинистых минералов почв и осадочных пород, но, главным образом, «удержанием» калия как биофильного элемента в малом биологическом круговороте элементов между почвой и растительным покровом суши.


На аккумуляцию биофильных элементов в почвах обратили внимание академики В.И. Вернадский и А.Е. Ферсман. А.Е. Ферсман, сопоставляя кларки среднего содержания химических элементов в разных природных телах, в своей «Геохимии» писал: «Почвы и кларки живого вещества очень близки и мы должны признать, что средний состав живого вещества следует в меньшей степени кларкам атмосферы и гидросферы, и ближе всего и непосредственно следует кларкам почвенного покрова, который в сущности и предопределяет состав организмов» (Добровольский Г.В., 1990).

Близость геохимических связей почв с растительным покровом, почвенной биотой проявляется в зонально-региональных закономерностях и разнообразии типов биологического круговорота химических элементов на земной поверхности. Изучение геохимических связей почв, их биологической продуктивности с жизнью человека имеет прямое отношение к здравоохранению и медицинской географии. Потребляя растительную и животную продукцию, выращенную на почвах, человек включается в те «пищевые цепи», которые связывают его с химическим составом почв, выращиваемых на них растений и травоядных животных (Добровольский В.В., 1998.).


Давно было замечено, что существует прямая связь между спецификой химического состава почв в некоторых регионах и наличием в них эндемических болезней человека и животных. В бассейне реки Уров в Забайкалье была отмечена болезнь суставов и вообще костной ткани, получившая название «уровской». Она обусловлена необычным соотношением кальция, стронция и кремния в почвах, водах, растительных и животных продуктах. На отгонных пастбищах Дагестана наблюдалось проявление митоза (болезни мышц) у овец, как следствие избытка бора в почвах и кормах. Всем известна болезнь щитовидной железы из-за недостатка йода в кислых подзолистых почвах внутриконтинентальных районов (Виноградов А.П., 1949).

Не только упомянутые, но и другие функции почв, осуществляемые в биогеоценозах, имеют важное значение для сохранения, жизни и эволюции природных и антропогенных сообществ растений и животных, для жизни и хозяйственной деятельности человека.

Экологическая функция почв. Участие почв в формировании геохимического потока элементов.

Экологические функции почв в биосфере базируются на следующих основополагающих ее качествах. Во-первых, почва служит средой обитания и физической опорой для огромного числа организмов; во-вторых, почва является необходимым, незаменимым звеном и регулятором биогеохимических циклов, практически круговороты всех биогенов осуществляются через почву.

Главная функция почвы - это обеспечение жизни на Земле. Это определяется тем, что именно в почве концентрируются необходимые организмам биогенные элементы в доступных им формах химических соединений. Кроме того, почва обладает способностью аккумулировать необходимый для жизнедеятельности продуцентов биогеоценозов запасы воды, также в доступной им форме, равномерно обеспечивая их водой в течение всего периода вегетации. Наконец, почва служит оптимальной средой для укоренения наземных растений, обитания многочисленных беспозвоночных и позвоночных животных, разнообразных микроорганизмов. Собственно эта функция и определяет понятие "плодородие почв".

Вторая функция почв заключается в регулировании всех потоков вещества в биосфере. Все биогеохимические циклы элементов, включая циклы таких важнейших биогенов, как углерод, азот, кислород, фосфор, а также циклы воды осуществляются именно через почвы при ее регулирующем участии в качестве аккумулятора биогенных элементов. Почва - это связующее звено и регулирующий механизм в системах биологической и геологической циркуляции элементов.

Третья функция почвы - регулирование состава атмосферы и гидросферы. Атмосферная функция почвы осуществляется вследствие ее высокой пористости (40-60%) и плотной заселенности организмами, благодаря чему идет постоянный газообмен между почвой и атмосферой. Почва постоянно поставляет в атмосферу различные газы, в том числе и "парниковые" - СО2, СН4, а также множество так называемых "микрогазов". Одновременно почва поглощает кислород из атмосферы. Таким образом, в системе "почва - атмосфера" именно почва является генератором одних газов и "стоком" для других.

В сухопутной ветви глобального круговорота воды почва избирательно отдает в поверхностный и подземный сток растворимые в воде химические вещества, определяя тем самым гидрохимическую обстановку в водах и прибрежной части океана.

Четвертой важнейшей функцией почвы является накопление в поверхностной части коры выветривания, в почвенных горизонтах описанного выше специфического органического вещества - гумуса и связанной с ним химической энергии.

Пятая функция заключается в ее защитной роли по отношению к литосфере. Почва защищает литосферу от воздействия экзогенных факторов, регулируя процессы денудации суши.

Наконец, еще одна, шестая функция почвы - это генерирование и сохранение биологического разнообразия. Почва, являясь средой обитания для огромного числа организмов, ограничивает жизнедеятельность одних и стимулирует активность других. Чрезвычайно большое разнообразие почвенных свойств по кислотности, щелочности, засоленности или отсутствию солей; окислительная или восстановительная обстановка-все это создает огромные возможности жизнедеятельности различных организмов. По отношению к человеку почва имеет еще одну специфическую функцию, являясь главным средством сельскохозяйственного производства и местом поселения людей.

Участие почв в формировании

геохимического потока элементов.
1   2   3   4   5
написать администратору сайта