Главная страница
Навигация по странице:

ДЗ по информатике. Леонардо да Винчи 15 апреля 1452 г. 2 мая 1519 г



Скачать 32.25 Kb.
Название Леонардо да Винчи 15 апреля 1452 г. 2 мая 1519 г
Анкор ДЗ по информатике.docx
Дата 20.12.2017
Размер 32.25 Kb.
Формат файла docx
Имя файла ДЗ по информатике.docx
Тип Документы
#13207

Леонардо да Винчи

15 апреля 1452 г. — 2 мая 1519 г.

Итальянский инженер, техник, ученый, математик, анатом, ботаник, музыкант, живописец, скульптор, архитектор, философ эпохи Высокого Возрождения, Леонардо да Винчи родился 15 апреля 1452 года в городке Винчи, недалеко от Флоренции. Отец, сеньор, мессэр Пьеро да Винчи, был богатым нотариусом, так же как и четыре предыдущих поколения его предков. Умер Пьеро да Винчи в 77 лет (в 1504 г.), за свою жизнь имел четырех жен и был отцом десяти сыновей и двух дочерей (последний ребенок родился, когда ему было 75 лет). О матери Леонардо почти ничего не известно: в его биографиях чаще всего упоминается некая "молодая крестьянка" Катерина.

Стремительное развитие цифровой вычислительной техники (ВТ) и становление науки о принципах ее построения и проектирования началось в 40-х годах нашего века, когда технической базой ВТ стала электроника, затем микроэлектроника, а основой для развития архитектуры компьютеров (электронных вычислительных машин ЭВМ) - достижения в области искусственного интеллекта.

До этого времени в течение почти 500 лет цифровая вычислительная техника сводилась к простейшим устройствам для выполнения арифметических операций над числами. Основой практически всех изобретенных за 5 столетий устройств было зубчатое колесо, рассчитанное на фиксацию 10 цифр десятичной системы счисления.

Первый в мире эскизный рисунок тринадцатиразрядного десятичного суммирующего устройства на основе колес с десятью зубцами принадлежит Леонардо да Винчи. Он был сделан в одном из его дневников (ученый начал вести дневник еще до открытия Америки в 1492 г.).

В 1623 г. через 100 с лишним лет после смерти Леонардо да Винчи немецкий ученый Вильгельм Шиккард предложил свое решение той же задачи на базе шестиразрядного десятичного вычислителя, состоявшего также из зубчатых колес, рассчитанного на выполнение сложения, вычитания, а также табличного умножения и деления. Оба изобретения были обнаружены только в наше время и оба остались только на бумаге.

Наука и инженерное дело

Единственное его изобретение, получившее признание при его жизни — колесцовый замок для пистолета (заводившийся ключом). В начале колесцовый пистолет был мало распространён, но уже к середине XVI века приобрёл популярность у дворян, особенно у кавалерии, что даже отразилось на конструкции лат, а именно: максимилиановские доспехиради стрельбы из пистолетов стали делать с перчатками вместо рукавиц. Колесцовый замок для пистолета, изобретённый Леонардо да Винчи, был настолько совершенен, что продолжал встречаться и в XIX веке.

Блез Паска́ль (1623-1662) 

В 1642 г., когда Паскалю было 19 лет, была изготовлена первая действующая модель суммирующей машины. Через несколько лет Блэз Паскаль создал механическую суммирующую машину («паскалина»), которая позволяла складывать числа в десятичной системе счисления. В этой машине цифры шестизначного числа задавались путем соответствующих поворотов дисков (колесиков) с цифровыми делениями, результат операции можно было прочитать в шести окошках - по одному на каждую цифру. Диск единиц был связан с диском десятков, диск десятков - с диском сотен и т. д. Другие операции выполнялись с помощью довольно неудобной процедуры повторных сложений, и в этом заключался основной недостаток «паскалины». Всего приблизительно за десятилетие он построил более 50 различных вариантов машины. Изобретенный Паскалем принцип связанных колес явился основой, на которой строилось большинство вычислительных устройств на протяжении следующих трех столетий

Готфрид Вильгельм Лейбниц

В 1672 г., находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христианом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство для расчетов. В 1673 г. он завершил создание механического калькулятора. Развив идеи Паскаля, Лейбниц использовал операцию сдвига для поразрядного умножения чисел. Сложение производилось на нем по существу так же, как и на «паска-лине», однако Лейбниц включил в конструкцию движущуюся часть (прообраз подвижной каретки будущих настольных калькуляторов) и ручку, с помощью которой можно было крутить ступенчатое колесо или - в последующих вариантах машины - цилиндры, расположенные внутри аппарат

Жозеф Жаккард

Жозе́ф Мари́ Жакка́р (иногда Жаккард; фр. Joseph Marie Jacquard; 7 июля 1752, Лион — 7 августа 1834, Уллен, Рона) — французский изобретательткацкого стана для узорчатых материй (машина Жаккарда).

Развитие вычислительных устройств связано с появлением перфорационных карт и их применением. Появление же перфорационных карт связано с ткацким производством. В 1804 г. инженер Жозеф-Мари Жаккар построил полностью автоматизированный станок (станок Жаккара), способный воспроизводить сложнейшие узоры. Работа станка программировалась с помощью колоды перфокарт, каждая из которых управляла одним ходом челнока. Переход к новому рисунку происходил заменой колоды перфокарт

Ада Августа Лавлейс

Авгу́ста А́да Кинг (урождённая Ба́йрон), графиня Ла́влейс (англ. AugustaAdaKingByron, CountessofLovelace, обычно упоминается просто Ада Лавлейс (10 декабря 1815, Лондон, Великобритания — 27 ноября 1852, там же) — английская женщина-математик. Известна прежде всего созданием описания вычислительной машины, проект которой был разработан Чарльзом Бэббиджем. Составила первую в мире программу (для этой машины). Ввела в употребление термины «цикл» и «рабочая ячейка», считается первым программистом.

Программы для решения задач на машине Беббиджа, а также описание принципов ее работы, были составлены Адой Августой Лавлейс - дочерью Байрона.

Были созданы отдельные узлы машины. Всю машину из-за ее громоздкости создать не удалось. Только зубчатых колес для нее понадобилось бы более 50.000. Заставить такую махину работать можно было только с помощью паровой машины, что и намечал Беббидж.

Чарльз Бэббидж (1791-1871)

Он обнаружил погрешности в таблицах логарифмов Непера, которыми широко пользовались при вычислениях астрономы, математики, штурманы дальнего плавания. В 1821 г. приступил к разработке своей вычислительной машины, которая помогла бы выполнить более точные вычисления. В 1822 г. была построена разностная машина (пробная модель), способная рассчитывать и печатать большие математические таблицы. Это было очень сложное, большое устройство и предназначалось для автоматического вычисления логарифмов. Работа модели основывалась на принципе, известном в математике как «метод конечных разностей»: при вычислении многочленов используется только операция сложения и не выполняется умножение и деление, которые значительно труднее поддаются автоматизации. В последующем он пришел к идее создания более мощной - аналитической машины. Она не просто должна была решать математические задачи определенного типа, а выполнять разнообразные вычислительные операции в соответствии с инструкциями, задаваемыми оператором. По замыслу это не что иное, как первый универсальный программируемый компьютер. Аналитическая машина в своем составе должна была иметь такие компоненты, как «мельница» (арифметическое устройство по современной терминологии) и «склад» (память). Инструкции (команды) вводились в аналитическую машину с помощью перфокарт (использовалась идея программного управления Жаккара с помощью перфокарт). Шведский издатель, изобретатель и переводчик Пер Георг Шойц воспользовавшись советами Бэббеджа, построил видоизмененный вариант этой машины. В 1855 г. машина Шойца была удостоена золотой медали на Всемирной выставке в Париже. В дальнейшем один из принципов, лежащих в основе идеи аналитической машины, - использование перфокарт -нашел воплощение в статистическом табуляторе, построенном американцем Германом Холлеритом (для ускорения обработки результатов переписи населения в США в 1890 г.)

Говард Айкен

Го́вард Ха́тауэй Э́йкен (англ. HowardHathawayAiken; 9 марта 1900, Хобокен, штат Нью-Джерси, США — 14 марта 1973, Сент-Луис, штатМиссури, США) — американский пионер компьютеростроения. В должности инженера IBM руководил работами по созданию первого американского компьютера «Марк I».

В 1937 г. Г. Айкен предложил проект большой счетной машины и искал людей, согласных профинансировать эту идею. Спонсором выступил Томас Уотсон, президент корпорации IBM: его вклад в проект составил около 500 тыс. долларов США. Проектирование новой машины «Марк-1», основанной на электромеханических реле, началось в 1939 г. в лабораториях Нью-Йоркского филиала IBM и продолжалось до 1944 г. Готовый компьютер содержал около 750 тыс. деталей и весил 35 т. Машина оперировала двоичными числами до 23 разрядов и перемножала два числа максимальной разрядности примерно за 4 с. Поскольку создание «Марк-1» длилось достаточно долго, пальма первенства досталась не ему, а релейному двоичному компьютеру Z3 Конрада Цузе, построенному в 1941 г. Стоит отметить, что машина Z3 была значительно меньше машины Айкена и к тому же дешевле в производстве

Алан Тьюринг

А́лан Мэ́тисон Тью́ринг (23 июня 1912 — 7 июня 1954)

Английский математик, дал математическое определение алгоритма через построение, названное машиной Тьюринга. В период Второй мировой войны немцы использовали аппарат «Enigma» для шифровки сообщений. Без ключа и схемы коммутации (немцы их меняли три раза в день) расшифровать сообщение было невозможно. С целью раскрытия секрета британская разведка собрала группу блестящих и несколько эксцентричных ученых. Среди них был математик Алан Тьюринг. В конце 1943 г. группа сумела построить мощную машину (вместо электромеханических реле в ней применялись около 2000 электронных вакуумных ламп). Машину назвали «Колосс». Перехваченные сообщения кодировались, наносились на перфоленту и вводились в память машины. Лента вводилась посредством фотоэлектрического считывающего устройства со скоростью 5000 символов в секунду. Машина имела пять таких считывающих устройств. В процессе поиска соответствия (расшифровки) машина сопоставляла зашифрованное сообщение с уже известными кодами «Enigma» (по алгоритму работы машины Тьюринга). Работа группы до сих пор остается засекреченной. О роли Тьюринга в работе группы можно судить по следующему высказыванию члена этой группы математика И. Дж. Гуда: «Я не хочу сказать, что мы выиграли войну благодаря Тьюрингу, но беру на себя смелость сказать, что без него мы могли бы ее и проиграть». Машина «Колосс» была ламповая (крупный шаг вперед в развитии вычислительной техники) и специализированная (расшифровка секретных кодов)

Конрад Цузе

В 1934 г., будучи студентом технического вуза (в Берлине), не имея ни малейшего представления о работах Ч. Бэббиджа, К. Цузе начал разрабатывать универсальную вычислительную машину, во многом подобную аналитической машине Бэббиджа. В 1938 г. он завершил постройку машины, занимавшую площадь 4 кв. м., названную Z1 (по-немецки его фамилия пишется как Zuse). Это была полностью электромеханическая программируемая цифровая машина. Она имела клавиатуру для ввода условий задач. Результаты вычислений высвечивались на панели с множеством маленьких лампочек. Ее восстановленная версия хранится в музее Verker und Technik в Берлине. Именно Z1 в Германии называют первым в мире компьютером. Позднее Цузе стал кодировать инструкции для машины, пробивая отверстия в использованной 35-миллиметровой фотопленке. Машина, работавшая перфорированной лентой, получила название Z2. В 1941 г. Цузе построил программно-управляемую машину, основанную на двоичной системе счисления - Z3. Эта машина по многим своим характеристикам превосходила другие машины, построенные независимо и параллельно в иных странах. В 1942 г. Цузе совместно с австрийским инженером-электриком Хельмутом Шрайером предложили создать компьютер принципиально нового типа — на вакуумных электронных лампах. Эта машина должна была работать в тысячу раз быстрее, чем любая из машин, имевшихся в то время в Германии. Говоря о потенциальных сферах применения быстродействующего компьютера, Цузе и Шрайер отмечали возможность его использования для расшифровки закодированных сообщений (такие разработки уже велись в различных странах).

Джон Моучли (1907-1980) и Преспер Экерт (род. в 1919)

Первой ЭВМ считается машина ЭНИАК (ENIAC, Electronic Numerial Integrator and Computer - электронный цифровой интегратор и вычислитель). Ее авторы, американские ученые Дж. Моучли и Преспер Экерт, работали над ней с 1943 по 1945 гг. Она предназначалась для расчета траекторий полетов снарядов, и представляла собой сложнейшее для середины XX в. инженерное сооружение длиной более 30 м, объемом 85 куб. м, массой 30 т. В ЭНИАКе были использованы 18 тыс. электронных ламп, 1500 реле, машина потребляла около 150 кВт. Далее возникла идея создания машины с программным обеспечением, хранимым в памяти машины, что изменило бы принципы организации вычислений и подготовило почву для появления современных языков программирования (ЭДВАК - Электронный Автоматический Вычислитель с дискретными переменными, EDVAC - Electronic Discret Variable Automatic Computer). Эта машина была создана в 1950 г. В более емкой внутренней памяти содержались и данные, и программа. Программы записывались электронным способом в специальных устройствах - линиях задержки. Самое главное было то, что в ЭДВАКе данные кодировались не в десятичной системе, а в двоичной (сократилось количество используемых электронных ламп). Дж. Моучли и П. Экерт после создания своей собственной компании задались целью создать универсальный компьютер для широкого коммерческого применения - ЮНИВАК (UNIVAC, Universal Automatic Computer - универсальный автоматический компьютер). Примерно за год до того, как первый э НИВАК вступил в эксплуатацию в Бюро переписи населения в США, партнеры оказались в тяжелом финансовом положении и вынуждены были продать свою компанию фирме «Ремингтон Рэнд». Однако ЮНИВАК не стал первым коммерческим компьютером. Им стала машина ЛЕО (LEO, Lyons' Bectronic Office), которая применялась в Англии для расчета зарплаты работникам чайных магазинов (фирма «Лайонс»), В 1973 г. федеральный суд США признал их авторские права на изобретение электронного цифрового компьютера недействительными, а идеи - заимствованными у Дж. Атанасоффа

Джон фон Нейман (1903-1957)

Работая в группе Дж. Мочли и П. Экерта, фон Нейман подготовил отчет - «Предварительный доклад о машине ЭДВАК», в котором обобщил планы работы над машиной. Это была первая работа по цифровым электронным компьютерам, с которой познакомились определенные круги научной общественности (по соображениям секретности работы в этой области не публиковались). С этого момента компьютер был признан объектом, представлявшим научный интерес. В своем докладе фон Нейман выделил и детально описал пять ключевых компонентов того, что ныне называют «архитектурой фон Неймана» современного компьютера.

В нашей стране независимо от фон Неймана были сформулированы более детальные и полные принципы построения электронных цифровых вычислительных машин (Сергей Алексеевич Лебедев)

ДЗ

Все изображения, с которыми вам придется иметь дело, делятся на векторные («штриховые») и пиксельные (их еще называют «растровыми», но к растру как таковому они никакого отношения не имеют).Векторные объекты состоят из контура (пути, path, stroke) и заливки (fill). Контур представляет собой кривую (curve). Точки, образующие кривую, называются якорными точками (ankor points). Поведение кривой между двумя точками определяется тангенсами (видите, там по бокам усы такие торчат?). Контуру и заливке можно присваивать разные цвета, а контуру еще и задавать ширину.Векторные изображения за счет простоты описания имеют маленький вес и не теряют в качестве при любом масштабировании.Пиксельные изображения (в т.ч. и сканированные) представляют из себя прямоугольную матрицу, каждый элемент которой (пиксел) описывается значениями цветовых составляющих. Вес пиксельных картинок зависит от цветовой модели и количества пикселов в изображении. Растягивать такие картинки не рекомендуется.
написать администратору сайта