Государственное учреждение
высшего профессионального образования
«БЕЛОРУССКО–РОССИЙСКИЙ УНИВЕРСИТЕТ»
Кафедра «Технология металлов»
ХИМИЯ
Методические указания к практическим занятиям
и для самостоятельной работы студентов
технических специальностей дневной
и заочной форм обучения
Гальванические элементы
Коррозия металлов
Могилев 2014
УДК 54
ББК 24.1
Х 46
Рекомендовано к опубликованию
Учебно-методическим управлением
ГУ ВПО «Белорусско-Российский университет»
Одобрено кафедрой «Технологии металлов» «27» февраля 2014 г., протокол № 8
Составители: канд. биол. наук, доцент И.А.Лисовая,
канд. хим. наук, доцент И.М. Лужанская.
Рецензент: канд. хим. наук, доцент Жогальский
В методических указаниях раскрыто содержание тем «Гальванические элементы» и «Коррозия металлов». Вниманию студентов предложены основные понятия и законы данных тем, приведены примеры написания электродных процессов, составления схем работы гальванических элементов. Так же рассмотрены примеры решения некоторых задач и даны контрольные вопросы и упражнения.
Учебное издание
ХИМИЯ
Ответственный за выпуск Д.И. Якубович
Технический редактор А. А. Подошевко
Компьютерная верстка И. А. Алексеюс
Подписано в печать . Формат 60х84 1/16. Бумага офсетная. Гарнитура Таймс.
Печать трафаретная. Усл. печ. л. . Уч.-изд. л. . Тираж 71 экз. Заказ № ________
Издатель и полиграфическое исполнение
Государственное учреждение высшего профессионального образования
«Белорусско-Российский университет»
ЛИ № 02330/375 от 29.6.2004 г.
212030, г.Могилев, пр.Мира, 43
ГУ ВПО Белорусско-Российский
университет, 2014
1 Гальванические элементы
В узлах металлической кристаллической решетки располагаются положительно заряженные ионы, находящиеся в равновесии со свободными электронами. При погружении металла (Ме) в раствор начинается взаимодействие поверхностных ионов металла (Me n+), находящихся в узлах решетки, с полярными молекулами воды. При этом ионы металла переходят из металлической фазы в раствор.
В результате между металлом и раствором устанавливается равновесие:
Me + mH2O Me n+ ∙m H2O + nē,
в растворе на металле
где n – число электронов, принимающих участие в процессе.
Если преобладает переход ионов из металлической фазы в раствор, то раствор приобретает положительный заряд (рисунок 1, а), а металлический электрод заряжается отрицательно. Если при установлении контакта металл – раствор скорость перехода катионов из металла в раствор была меньше, чем скорость их перехода в обратном направлении, то между электродом и раствором также устанавливается равновесие, но в этом случае электрод заряжается положительно, а раствор – отрицательно (рисунок 1, б).
Возникает электростатическое притяжение между перешедшими в жидкость гидратированными катионами и поверхностью металла. В любом случае появляется двойной электрический слой, характеризующийся определенным скачком потенциала.
Потенциал, устанавливающийся в условиях равновесия электродной реакции, называется равновесным электродным потенциалом. В настоящее время абсолютные значения электродных потенциалов на границе двух фаз разной природы металл│электролит экспериментально определить невозможно. Однако можно определить разность электродных потенциалов.
а) б) в)
Рисунок 1 – Схема двойного электрического слоя (а) и (б); распределение заряда в объеме электролита (в)
Значения электродных потенциалов определяются относительно некоторого электрода, потенциал которого условно принят за нулевой. Таким эталонным электродом выбран водородный в стандартных условиях.
Таким образом, стандартным электродным потенциалом Е0 металла называют его электродный потенциал, возникающий при погружении металла в раствор, в котором концентрация (или активность) собственных ионов равна 1 моль/л, измеренный по сравнению со стандартным водородным электродом, потенциал которого при 298 К условно принимается равным нулю.
Величина возникающего в результате этого процесса электродного потенциала определяется по уравнению Нернста:
,
где – электродный потенциал;
– стандартный электродный потенциал;
R – газовая постоянная;
Т – температура;
F – число Фарадея;
n – число электронов, участвующих в электронной реакции;
а – активная концентрация ионов металла в растворе.
Потенциал электрода, как видно из этого уравнения, зависит от активности (концентрации) ионов металла, от природы электролита, от природы электрода, от заряда иона и от температуры.
Перейдя от натуральных логарифмов к десятичным и подставив численные значения F, R и T = 298 K, а так же заменив активность на молярную концентрацию, получим удобную для расчетов форму уравнения Нернста:
.
Значения некоторых стандартных окислительно-восстановительных потенциалов гальванических элементов, расположенных в порядке возрастания их алгебраической величины, представлены в ряду стандартных электродных потенциалов – СЭП (ряду напряжения).
-
-
-
Металл
|
Е, В
|
Li+
|
–3,05
|
K+
|
–2,92
|
Ba2+
|
–2,91
|
Ca2+
|
–2,87
|
Na+
|
–2,71
|
Mg2+
|
–2,36
|
Al3+
|
–1,70
|
Cr2+
|
–0,85
|
Zn2+
|
–0,76
|
Fe2+
|
–0,44
|
Ni2+
|
–0,23
|
Pb2+
|
–0,13
|
H+
|
0
|
Cu2+
|
+0,34
|
Ag+
|
+0,80
|
Hg2+
|
+0,85
|
Au+
|
+1,69
|
Таблица 1 – Ряд стандартных электродных потенциалов
Выводы из ряда СЭП:
1 Чем меньше значение Е0, тем более сильные восстановительные свойства проявляет простое вещество – металл (и тем легче он электроны отдает). Чем больше значение Е0 , тем более сильным окислителем в водном растворе являются ионы металла (и тем легче они принимают электроны).
2
2.1 Активные металлы начала ряда вытесняют водород из воды (а). Магний вытесняет водород только из горячей воды (б).
2.2 Металлы, расположенные между магнием и кадмием, обычно не вытесняют водород из воды. На поверхности этих металлов образуются оксидные пленки, обладающие защитным действием. В некоторых случаях возможно протекание процесса в случае нагревания (в) или разрушения защитной оксидной пленки (г). Например:
а) 2Na + 2H2O → 2NaOH + Н2↑;
t
б) Mg + 2H2O → 2Mg(OH)2 + Н2↑;
в) 3Fe + 4H2O → Fe3O4 + 4Н2↑;
г) Zn + 2H2O + 2KOH → K2[Zn(OH)4] + Н2↑.
2.3 Металлы, расположенные в ряду СЭП после водорода, с водой в отсутствии окислителей не взаимодействуют.
3 Водород из кислот не окислителей способны вытеснять только те металлы, которые имеют отрицательную величину стандартного водородного электрода и расположены в ряду СЭП до (выше) водорода. Металлы, расположенные в ряду СЭП после водорода, с растворами кислот не взаимодействуют. Например:
Мg + 2HCl → MgCl2 + H2↑ или в ионной форме Мg0 + 2H+ → Mg2+ + H20↑
Ag + HCl →
При этом на поверхности некоторых металлов образуются защитные пленки, тормозящие реакцию. Так, оксидная пленка на алюминии делает этот металл стойким не только в воде, но и в растворах некоторых кислот. Явление глубокого торможения окисления металла, обусловленное наличием на его поверхности защитных оксидных или солевых пленок, называется пассивностью, а состояние металла при этом – пассивным состоянием.
4 Металлы способны вытеснять друг друга из растворов солей. Рассматривая конкретные случаи таких реакций, следует помнить, что активные металлы вытесняют водород не только из воды, но и из любого водного раствора. Поэтому взаимное вытеснение металлов из растворов их солей практически происходит лишь в случае металлов, расположенных в ряду после магния. То есть, металл с более отрицательным значением стандартного электродного потенциала является восстановителем по отношению к электроду с более положительным значением E0.
Таким образом, металлы средней химической активности, стоящие в ряду СЭП выше, вытесняют нижестоящие из их солей. Например:
Мg + Ni(NO3)2 → Mg(NO3)2 + Ni
или в ионной форме: Мg0 + Ni2+ → Mg2+ + Ni0.
Устройства, которые применяют для непосредственного преобразования энергии химической реакции в электрическую энергию, называются гальваническими элементами.
В простейшем случае гальванический элемент состоит из двух пластин или стержней (электродов первого рода), изготовленных из различных металлов (окислительно-восстановительных пар), погруженных в раствор электролита (чаще – это раствор соли металла).
Электрод, на котором происходит процесс окисления (анодный процесс), называется анодом. Роль анода играет металл с меньшей алгебраической величиной электродного потенциала, т. е. более активный металл. Электрод, на котором осуществляется восстановление (катодный процесс), называется катодом (металл с большей алгебраической величиной электродного потенциала).
Рассмотрим в качестве примера медно-цинковый гальванический элемент (элемент Якоби-Даниэля). Этот элемент (рисунок 2) состоит из медной пластины, погруженной в раствор сульфата меди (медный электрод), и цинковой пластины, погруженной в раствор сульфата цинка (цинковый электрод). Оба раствора или соприкасаются друг с другом, но для предупреждения смешивания они разделены перегородкой, изготовленной из пористого материала (рисунок 2, а), или не соприкасаются, но взаимосвязь между ними осуществляется посредством проводника второго рода (электролитного мостика (рисунок 2, б).
а) б)
а) с растворами, соприкасающимися друг с другом;
б) с изолированными растворами
Рисунок 2 – Схема гальванического элемента Якоби-Даниэля.
Работа гальванического элемента при замыкании цепи начинается с того, что электрод, изготовленный из более активного металла, в данном случае из цинка, взаимодействует с полярными молекулами воды, находящимися в соприкасающемся с поверхностью электрода растворе, по уравнению:
Zn0 + п Н2О → Zn2+∙ п Н2О + 2ē
или в упрощенной форме Zn0 – 2ē → Zn2+.
Образовавшиеся гидратированные катионы цинка переходят в раствор, а электроны заряжают отрицательно поверхность электрода. В этом заключается первая стадия работы гальванического элемента – возникновение источника отрицательного электричества.
Осуществляется отвод высвобождающихся при этом электронов по внешней цепи с анода на катод в результате соединения цинкового электрода проволокой с медным электродом. В этом заключается вторая стадия работы гальванического элемента – прохождение электрического тока по проводнику.
На медном электроде протекает восстановление ионов меди. Электроны, приходящие сюда от цинкового электрода, соединяются с выходящими из раствора дегидратирующимися катионами меди. Образуются атомы меди, выделяющиеся в виде металла:
Cu 2+∙ п Н2О + 2ē → Cu0 + п Н2О
или в упрощенной форме Cu2+ + 2ē → Cu0.
Таким образом, на медном электроде идет процесс восстановления меди. В этом заключается третья стадия работы гальванического элемента – разрядка ионов на катоде. Все три стадии работы гальванического элемента сопряжены между собой и идут с одинаковой скоростью.
Суммарное уравнение реакции, протекающей в элементе (токообразующей реакции), получится при сложении уравнений обеих полуреакций:
Zn0 + Cu2+ → Zn2+ + Cu0
или в молекулярной форме:
Zn + CuSO4 → ZnSO4 + Cu
У цинкового электрода катионы выходят в раствор, создавая в нем избыточный положительный заряд, а у медного электрода раствор, наоборот, все время обедняется катионами, так что здесь раствор заряжается отрицательно. В результате этого создается электрическое поле, в котором катионы, находящиеся в растворе (Сu2+ и Zn2+), движутся от цинкового электрода к медному, а анионы SO42– – в обратном направлении. Движение ионов SO42– в растворе замыкает электрическую цепь гальванического элемента (например, если убрать электролитный мостик (рисунок 2, б), то электрический ток по внешнему проводнику протекать не будет).
Таким образом, при замыкании внешней цепи, т. е. при соединении цинка с медью металлическим проводником, возникают самопроизвольные процессы растворения цинка (как более активного металла) на аноде и выделения меди (как менее активного металла) из раствора на катоде. Данные процессы будут продолжаться до тех пор, пока не выровняются потенциалы электродов или не растворится весь цинк (или не восстановится на медном электроде вся медь).
При схематическом изображении гальванического элемента граница раздела фаз между металлом и раствором обозначается одной вертикальной чертой, граница между растворами электролитов – двойной вертикальной чертой, которая отделяет анодное пространство от катодного. Слева записывается анод ZnZn2+, на котором возникает избыток электронов и происходит процесс окисления. Справа – катод Cu2+Cu – электрод с недостатком электронов. Стрелками показано направление движения электронов во внешней цепи гальванического элемента.
Например, схема гальванического элемента Якоби-Даниэля изображается следующим образом (молекулярная форма):
2ē
Zn ZnSO4 CuSO4 Cu.
|
Эта же схема может быть изображена в ионной форме:
2ē
Zn Zn2+ Cu2+ Cu.
|
Окислительно-восстановительная реакция, характеризующая работу гальванического элемента, протекает в направлении, в котором электродвижущая сила (ЭДС) элемента имеет положительное значение. В соответствии с принятой формой записи гальванического элемента его ЭДС равна электродному потенциалу электрода-окислителя минус электродный потенциал электрода-восстановителя.
ЭДС гальванического элемента определяется как разность электродных потенциалов катода и анода:
ЭДС = ЕК – ЕА. .
В случае элемента Якоби-Даниэля (–) ZnZn2+||Cu2+Cu(+) для стандартных условий:
ЭДС = Е0Cu – Е0Zn = 0, 34 – (–0, 76) = 1,1 В
Для нестандартных условий ЭДС элемента Якоби-Даниэля находится из разности электродных потенциалов, вычисленных по уравнению Нернста.
2 Коррозия металлов
Коррозия металлов – самопроизвольное разрушение металлов и изделий из них вследствие физико-химического воздействия внешней среды, при котором металл переходит в окисленное (ионное) состояние и теряет присущие ему свойства.
Общая масса металлических материалов, используемых в виде различных изделий в мировом хозяйстве, очень велика. Поэтому, несмотря на то, что обычно скорость коррозии мала, ежегодно из-за коррозии безвозвратно теряются огромные количества металла. По ориентировочным подсчетам безвозвратные потери металла от коррозии составляют 10–15 % мировой продукции стали.
В основе коррозийных процессов лежат окислительно-восстановительные реакции металлов с окружающей средой, сопровождающиеся переходом металлов в более термодинамически устойчивое состояние.
Среда, в которой металл подвергается коррозии (коррозирует) называется коррозионной или агрессивной средой. В зависимости от уровня рН выделяют коррозию в трех средах: кислой, щелочной и нейтральной.
2.1 Классификация видов коррозии
2.1.1 По типу разрушения. Характер разрушения поверхности металла в результате коррозии может быть различным в зависимости от свойств этого металла и условий протекания процесса. Различные виды коррозионных разрушений схематически показаны на рисунке 5.
Основными видами коррозионных разрушений являются: равномерное (а), пятнами (б), точечное (в), питтинг, или углубленно точечное (г), межкристаллитное (д), растрескивающее (е), селективное или избирательное (ж).
При равномерном распределении коррозионных разрушений по всей поверхности металла коррозию называют равномерной или сплошной. Она не представляет собой опасности для конструкций и аппаратов, особенно в тех случаях, когда потери металлов не превышают технически обоснованных норм. Ее последствия могут быть сравнительно легко учтены.
Если же значительная часть поверхности металла свободна от коррозии и последняя сосредоточена на отдельных участках, то ее называют местной. Она гораздо опаснее, хотя потери металла могут быть и небольшими. Ее опасность состоит в том, что, снижая прочность отдельных участков, она резко уменьшает надежность конструкций, сооружений, аппаратов. Местной коррозии благоприятствуют морская вода, растворы солей, в частности галогенидных: хлорид натрия, кальция, магния. Соли являются активаторами коррозии и приводят к ускоренному разрушению металлов, в частности транспортных средств и подземных коммуникаций. Пятнистая (в виде пятен различной величины), точечная, щелевая, контактная, межкристаллическая коррозия - наиболее часто встречающиеся в практике типы местной коррозии. Точечная коррозия страшна в том случае, если она приводит к образованию сквозных поражений, то есть точечных полостей – питтингов.
а) б) в)
г) д) е)
ж)
Рисунок 5 – Виды коррозионных разрушений
Коррозионное растрескивание возникает при одновременном воздействии на металл агрессивной среды и механических напряжений. В металле появляются трещины транскристаллитного характера, которые часто приводят к полному разрушению изделий.
Из всех видов коррозионных разрушений наиболее опасным является межкристаллитное, при котором ослабевают связи между зернами структуры сплава.
2.1.2 По механизму разрушения. По механизму коррозионного процесса различают два основных типа коррозии: химическую и электрохимическую. Строго отделить один вид от другого трудно, а иногда и невозможно.
Под химической коррозией подразумевают взаимодействие металлической поверхности с окружающей средой, не сопровождающееся возникновением электрохимических (электродных) процессов на границе фаз. Она основана на реакции между металлом и агрессивным реагентом. Этот вид коррозии протекает в основном равномерно по всей поверхности металла. Делится на газовую и жидкостную.
Газовой коррозии подвергаются арматура печей, детали двигателей внутреннего сгорания, лопатки газовых турбин и т. п. Газовую коррозию претерпевает также металл, подвергаемый термической обработке. Многие знают, что на прокатке раскаленных кусков металла образуется окалина. Это типичный продукт химической коррозии.
Жидкостная коррозия протекает в среде нефти и нефтепродуктов, содержащих примеси серы. Сюда можно отнести взаимодействие металла с жидкой серой и с нефтепродуктами, содержащими серу, вообще взаимодействие металлов с жидкостями, не являющимися электролитами (ацетон, фреоны и др.).
2.2 Электрохимическая коррозия металлов
Под электрохимической коррозией подразумевают процесс взаимодействия металлов с электролитами в виде водных растворов, реже с неводными электролитами, например, с некоторыми органическими электропроводными соединениями или безводными расплавами солей при повышенных температурах. Делится на электрокоррозию и гальванокоррозию. Из указанных разновидностей рассмотрим лишь гальванокоррозию.
2.2.1 Электрохимическая гальванокоррозия. Электрохимическая коррозия – наиболее распространенный вид коррозии металлов. Примером коррозионных процессов электрохимического характера является разрушение деталей машин, приборов и различных металлических конструкций в почвенных, грунтовых, речных и морских водах, в атмосфере под адсорбированными пленками влаги, в технических растворах.
Растворенный кислород и ионы водорода – важнейшие окислители, вызывающие электрохимическую коррозию металлов.
Рассмотрим схему этого процесса. Сложность его заключается в том, что на одной и той же поверхности происходят одновременно два процесса, противоположные по своему химическому смыслу: окисление металла и восстановление окислителя. Оба процесса должны протекать сопряженно, чтобы сохранялось равенство числа электронов, отдаваемых металлом и присоединяющихся к окислителю в единицу времени. Только в этом случае может наступить стационарное состояние.
Итак, процессы электрохимической коррозии протекают по законам электрохимической кинетики, когда общая реакция взаимодействия может быть разделена на следующие, в значительной степени самостоятельные, электродные процессы:
– анодный процесс – переход металла в раствор в виде ионов (в водных растворах, обычно гидратированных) с оставлением эквивалентного количества электронов в металле:
Ме 0 – nē → Ме n+
– катодный процесс – ассимиляция появившихся в металле избыточных электронов деполяризаторами.
Различают коррозию с водородной и кислородной (или окислительной) деполяризацией. При наличии в растворе газообразного кислорода и невозможностью протекания процесса коррозии с водородной деполяризацией основную роль деполяризатора исполняет кислород. Коррозионные процессы, у которых катодная деполяризация осуществляется растворенным в электролите кислородом, называют процессами коррозии металлов с кислородной деполяризацией. Это наиболее распространенный тип коррозии металла в воде, в нейтральных и даже в слабокислых солевых растворах, в морской воде, в земле, в атмосфере воздуха.
Общая схема кислородной деполяризации сводится к восстановлению молекулярного кислорода до иона гидроокисла:
O + 4ē +2H2O → 4OH—.
В случае водородной деполяризации на катоде протекает процесс восстановления ионов водорода, находящихся в среде:
2Н++ 2ē + → Н2.
2.3 Способы защиты от коррозии
Выбор того или иного способа определяется его эффективностью, а также экономической целесообразностью.
2.3.1 Легирование металла – эффективный (хотя обычно дорогой) метод повышения коррозионной стойкости металлов. При легировании в состав сплава обычно вводят компоненты, вызывающие пассивирование металла. В качестве таких компонентов применяются хром, никель, вольфрам и др.
Основное средство защиты металлов от газовой коррозии – легирование такими компонентами, которые улучшают свойства защитных пленок, образующихся при окислении металла. Для стали такими элементами являются хром, алюминий, кремний. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов.
2.3.2 Защитные покрытия. Слои, искусственно создаваемые на поверхности металлических изделий и сооружений для предохранения их от коррозии, называются защитными покрытиями. Выбор вида покрытия зависит от условий, в которых используется металл.
Широко распространенным способом защиты металлов от коррозии является покрытие их слоем других металлов. Покрывающие металлы сами корродируют с малой скоростью, так как покрываются плотной оксидной пленкой. В зависимости от величины электродного потенциала защищаемого металла и покрытия, различают катодные и анодные покрытия.
Катодное покрытие – металл покрытия менее активен, чем защищаемый металл. Например, олово хорошо покрывает железо и достаточно стойко против действия разбавленных растворов кислот. В случае механического повреждения такого покрытия возникает гальваническая пара, в которой электроны переходят от железа к олову; анодом здесь является железо, а катодом олово. В этом случае разрушается железо, а олово остается без изменений (рисунок 5).
Анодное покрытие – покрытие более активным металлом. Например, покрытие железа цинком (рисунок 4). При механическом повреждении цинкового покрытия возникает гальваническая пара, в которой железо служит катодом, а анодом – цинк. Электроны переходят от цинка к железу, цинк разрушается, а железо остается защищенным до тех пор, пока не разрушится весь цинк. На основании вышеизложенного можно сделать вывод о том, что более надежным является анодное покрытие.
а) б)
1 – раствор; 2 – покрытие; 3–основной материал; 4 – пора
Рисунок 4 – Схема коррозии металла в кислом
растворе при нарушении анодного а) и катодного б) покрытия
К ряду покрытий, получаемых химической обработкой металла, относятся защитные покрытия, образующиеся непосредственно на поверхности металла. Образование на поверхности металлических изделий защитных оксидных пленок носит в технике общее название оксидирование.
Неметаллические защитные покрытия могут быть как неорганическими, так и органическими. Защитное действие этих покрытий сводится в основном к изоляции металла от окружающей среды. В качестве неорганических покрытий могут быть неорганические эмали, оксиды металлов, соединения хрома, фосфора и др. К органическим относятся лакокрасочные покрытия, покрытия смолами, пластмассами, полимерными пленками, резиной.
2.3.3 Электрохимические методы защиты. Методы электрохимической защиты основаны на изменении потенциала защищаемого металла и не связаны с изоляцией металла от коррозионной среды. К ним относятся катодная защита, называемая также электрозащитой, и протекторная (или анодная) защита.
Катодная защита заключается в том, что защищаемая конструкция А (рисунок 5), находящаяся в среде электролита (например, в почвенной воде), присоединяется к катоду внешнего источника электричества В. Защищаемая конструкция становится катодом. В ту же агрессивную среду помещают кусок старого металла Б (рельс, балка), присоединяемый к аноду внешнего источника электричества. В процессе коррозии этот кусок старого металла становится анодом и разрушается.
Протекторная защитаотличается от катодной защиты тем, что для ее осуществления используется специальный анод – протектор, в качестве которого применяют металл более активный, чем металл защищаемой конструкции (алюминий, цинк). Протектор Б(рисунок 6) соединяют с защищаемой конструкцией Апроводником электрического тока В. В процессе коррозии протектор служит анодом и разрушается, тем самым предохраняя от разрушения защищаемую конструкцию.
Рисунок 5 – Схема катодной Рисунок 6 – Схема анодной
защиты (протекторной) защиты
2.3.4 Изменение свойств коррозионной среды. Изменение свойств коррозионной средыпригодно для случаев, когда защищаемое изделие эксплуатируется в ограниченном объеме жидкости. Один из методов состоит в удалении из раствора, в котором эксплуатируется защищаемая деталь, растворенного кислорода (деаэрация). В качестве примера можно привести освобождение воды, идущей на питание паровых котлов, от растворенного в ней кислорода, что достигается, например, при фильтровании воды через слой железных стружек.
Для замедления коррозии металлических изделий в агрессивную среду вводят вещества, называемые ингибиторами (или замедлителями) коррозии. Это имеет большое значение в тех случаях, когда металл необходимо защищать от разъедания кислотами.В зависимости от вида коррозии, природы металла и раствора применяются различные ингибиторы, действие которых специфично.
2.3.5 Создание рациональных конструкций. Выбор материалов и их сочетаний для данной машины, конечно, диктуется технической и экономической целесообразностью, но должен обеспечивать ее коррозионную устойчивость. Конструктор должен предусмотреть рациональные формы машины, допускающие быструю очистку от грязи; машина не должна иметь мест скопления влаги, которая является возбудителем коррозии.
3 Примеры решения задач
3.1 Ряд напряжения металлов. Гальванические элементы.
3.1.1 Рассчитайте электродный потенциал Bi в 0,01 м растворе его соли.
Значение электродного потенциала рассчитаем на основании уравнения Нернста:
.
Значение стандартного электродного потенциала (Е0) висмута возьмем из ряда СЭП (+0,21 В), n – количество электронов, участвующих в процессе, равно заряду иона висмута («3+»), концентрация ионов металла указана в условии задачи – 0,01 моль/л. Подставляем данные в формулу и производим расчет:
.
3.1.2 Какой гальванический элемент называется концентрационным? Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из серебряных электродов, опущенных: первый в 0,01 Н, а второй в 0,1 Н растворы AgNO3.
Гальванический элемент, составленный из одинаковых электродов, погруженных в растворы одного и того же электролита, различающихся только концентрацией, называется концентрационным. При этом электрод, помещенный в более разбавленный раствор (с меньшей концентрацией ионов в растворе), играет роль анода, а электрод в более концентрированном растворе (с большей концентрацией ионов металла в растворе) – роль катода.
Схема работы данного гальванического элемента:
Ag AgNO3 (0,01 н) AgNO3 (0,1 н) Ag
Электродные процессы:
А) Ag0 – 1ē = Ag+ – процесс окисления;
K) Ag+ + 1ē = Ag0 – процесс восстановления.
Величина электродного потенциала отдельно взятого электрода рассчитывается по уравнению Нернста. Значение электродного потенциала серебра возьмем из ряда СЭП (+0, 8 В), количество электронов, участвующих в процессе, равно заряду иона серебра («+1»).
На уравнения Нернста найдем электродные потенциалы металла анода и катода.
EК = 0,8 +
|
0,059
|
l g 0,1 = 0,741 В;
|
1
|
EА = 0,8 +
|
0,059
|
lg 0,01 = 0,682 В.
|
1
|
В данном случае будем считать, что СН = [Men+], поскольку фактор эквивалентности нитрата серебра равен 1.
ЭДС гальванического элемента рассчитаем по формуле
ЭДС = ЕК – ЕА = 0,741 – 0,682 = 0,059 В.
3.2 Коррозия металлов. Защита металлов от коррозии
3.2.1 Составьте электронные уравнения анодного и катодного процессов с кислородной и водородной деполяризацией при коррозии пары магний-никель. Какие продукты коррозии образуются в первом и втором случаях?
Поскольку магний имеет меньшую величину электродного потенциала (–2,37 В), чем никель (– 0,25 В), то он будет играть роль анода, а никель – роль катода. Так как металл катода является восстановленной формой, то на нем будет протекать процесс восстановления молекул кислорода, присутствующего в нейтральной среде (кислородная деполяризация), или ионов водорода, присутствующего в кислой среде (водородная деполяризация).
Электродные процессы, протекающие в нейтральной среде:
А) Mg0 – 2ē → Mg2+ – процесс окисления;
K) 2Н2О + О2 + 4ē → 4ОН– – процесс восстановления.
Образующиеся ионы магния связываются с гидроксид-ионами, с образованием гидроксида магния:
Mg2+ + 2ОН– → Mg(ОН)2 – продукт коррозии в нейтральной среде.
Схема работы данного гальванического элемента:
Mg H2O, О2 Ni
Электродные процессы, протекающие в кислой среде:
А) Mg0 – 2ē → Mg2+ – процесс окисления;
K) 2Н+ + 2ē → Н2 – процесс восстановления.
Поскольку не указана кислота, в которую погружена гальванопара магний – никель, то будем считать, что продуктом коррозии в кислой среде является соль мания (Mg2+ ).
Схема работы данного гальванического элемента:
Mg H+ Ni
3.2.2 Каким покрытием по отношению к железу является никель? Как протекает атмосферная коррозия железа, покрытого слоем никеля, если покрытие нарушено? Составьте электронные уравнения анодного и катодного процессов, протекающих в растворе хлорида натрия и в растворе бромоводородной кислоты. Каков состав продуктов коррозии?
1) Раствор хлорида натрия имеет нейтральную реакцию среды. Функция NaCl заключается в ускорении процесса коррозии.
Поскольку железо имеет меньшую величину электродного потенциала (– 0,44 В), чем никель (– 0,25 В), то оно будет играть роль анода, а никель – роль катода. Следовательно, покрытие никелем будет являться катодным по отношению к железу.
При нарушении никелевого покрытия на железе самопроизвольно возникает гальванический элемент. Так как металл катода является восстановленной формой, то на нем будет протекать процесс восстановления молекул кислорода, присутствующего в нейтральной среде (кислородная деполяризация).
Электродные процессы:
А) Fe0 – 2ē → Fe2+ – процесс окисления;
K) 2Н2О + О2 + 4ē → 4ОН– – процесс восстановления;
Fe2+ + 2ОН– → Fe(ОН)2.
Гидроксид железа Fe(ОН)2 является неустойчивым соединением, поэтому в нейтральной среде протекает процесс его доокисления:
4Fe(ОН)2 + 2Н2О + О2 → 4Fe(ОН)3.
Далее происходит процесс отщепления молекул воды и образование оксид-гидроксида.
Fe(ОН)3 → FeООН + Н2О;
2FeООН → Fe2О3 + Н2О.
Состав продуктов коррозии будет следующим:
Fe(ОН)2, Fe(ОН)3, FeООН, Fe2О3.
Схема работы данного гальванического элемента:
Fe H2O, О2, NаCl Ni
2) Бромоводородная кислота создает кислую среду. Как говорилось ранее, железо будет играть роль анода, а никель – роль катода. Так как металл катода является восстановленной формой, то на нём будет протекать процесс восстановления ионов водорода, образующихся при диссоциации бромоводородной кислоты.
Электродные процессы:
А) Fe0 – 2ē → Fe2+ – процесс окисления;
K) 2Н+ +2е → Н2 – процесс восстановления.
Образующиеся при окислении железа, его ионы будут взаимодействовать с образующимися при диссоциации кислоты ионами брома:
Fe2+ + 2Br– → FeBr2 – продукт коррозии.
Схема работы данного гальванического элемента:
Fe HBr Ni
Следует отметить, что во всех схемах, касающихся работы гальванического элемента и процессов коррозии, нижняя стрелка всегда идет к ионам (молекулам), выполняющим роль деполяризатора, т. е. принимающим электроны и восстанавливающимся на катоде.
4 Контрольные вопросы и задачи
1 Рассчитайте электродный потенциал алюминиевого электрода, опущенного в 0,001м раствор соли Cr2(SO4)4.
3 При какой концентрации ионов Sn2+ в растворе потенциал оловянного электрода станет равным стандартному электродному потенциалу водородного электрода ?
4 Что является окислителем и восстановителем в гальваническом элементе, составленном оловом и серебром, которые погружены в нормальные растворы их солей? Составьте схему соответствующего гальванического элемента.
6 Составьте схему, запишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из магниевых электродов, опущенных: первый в 0,001Н, второй в 0,01Н растворы MgSO4.
7 ЭДС гальванического элемента, образованного никелем, погруженным в раствор его соли с [Ni2+] = 0,0001 моль/л, и серебром, погруженным в раствор его соли, равна 1,108 В. Определить концентрацию ионов Ag+ в растворе его соли.
10 Как происходит атмосферная коррозия луженого и оцинкованного железа при нарушении покрытий? Составьте электронные уравнения анодного и катодного процессов.
11 Какое покрытие металла называется анодным и какое – катодным? Назовите несколько металлов, которые могут служить для анодного и катодного покрытия марганца. Составьте электронные уравнения анодного и катодного процессов, происходящих при коррозии марганца при нарушении анодного и катодного покрытий во влажном воздухе и в растворе серной кислоты.
12 Если опустить в соляную кислоту пластинку из чистого кадмия, то выделение на ней водорода идет медленно и со временем почти прекращается. Однако, если хромовой палочкой прикоснутся к кадмиевой пластинке, то на последней начинается бурное выделение водорода. Почему? Какой металл при этом растворяется? Составьте электронные уравнения анодного и катодного процессов.
Список литературы:
1 Ахметов, Н. С. Общая и неорганическая химия /Н. С. Ахметов. – М.: Высш. шк., 1981.
2 Глинка, Н.Л. Общая химия /Н. Л. Глинка – М.: Интеграл-Пресс, 2006.
3 Глинка, Н.Л. Задачи и упражнения по общей химии /Н. Л. Глинка – М.: Интеграл-Пресс, 2006.
4 Коровин, Н.В. Общая химия /Н. В. Коровин – М.: Высш. шк., 2002.
|