МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»
Кафедра высшей математики
Дисциплина геометрия
КУРСОВАЯ РАБОТА НА ТЕМУ:
«Взаимное расположение прямых в пространстве. Взаимное расположение прямой и плоскости»
Выполнил студент: Меховская Юлия Михайловна,
физико-математический факультет,
1 курс, МИ1
Руководитель: Петросян Г.Г.- ассистент кафедры высшей математики
Воронеж, 2014
Содержание
Введение…………………………………………………………………………...3
Глава I. Основные понятия……………………………………………………….5
1.1 Основные определения……………………………………………………….5
1.2 Различные способы задания прямой на плоскости………………………...6
1.3 Различные способы задания прямой в пространстве……………………….8
Глава II. Взаимное расположение прямых в пространстве…………………...10
2.1 Параллельные прямые……………………………………………………….10
2.2 Пересекающиеся прямые……………………………………………………11
2.3 Скрещивающиеся прямые…………………………………………………..11
Глава III. Взаимное расположение прямой и плоскости……………………...13
3.1 Прямая параллельна плоскости……………………………………………..13
3.2 Прямая пересекает плоскость……………………………………………….14
3.3 Прямая лежит в плоскости…………………………………………………15
Практическая часть……………………………………………………………...17
Заключение……………………………………………………………………….32
Список использованной литературы…………………………………………...33
Введение
Рассмотрение в курсе геометрии вопроса о взаимном расположении прямых на плоскости и в пространстве имеет очень большое значение. Знания о взаимном расположении прямых лежат в основе изучения свойств геометрических фигур как в планиметрии, так и в стереометрии. Действительно, параллельность прямых на плоскости является необходимым материалом для изучения свойств многоугольников и окружности; без знания взаимного расположения прямых в пространстве невозможно изучение свойств многогранных углов, многогранников и круглых тел.
Разделы о взаимном расположении прямых изучается сразу же после введения основных понятий геометрии на плоскости и в пространстве, которые используются при доказательстве первых предложений и решении задач. Это позволяет систематически вести работу по развитию логического мышления студентов, а также способствует прочному и сознательному усвоению ими основных понятий и аксиом и постепенному раскрытию их роли в курсе геометрии.
Изучение взаимного расположения прямых сопровождается решением большого количества задач, среди которых особое место занимают задачи на доказательство и задачи конструктивного характера. Конструктивные задачи трехмерного пространства требуют как формально-логического подхода при их решении, так и знания проекционного чертежа (параллельного проектирования и его свойств). В процессе решения задач у студентов развиваются пространственные представления, конструктивные навыки, в частности навыки изображения фигур на плоскости, навыки выполнения рисунков, их правильного восприятия и чтения.
Все выше сказанное и обусловило выбор темы курсовой работы: «Взаимное расположение прямых в пространстве, также изучить взаимное расположение прямой и плоскости».
Цель курсовой работы – изучить взаимное расположение прямых в пространстве, также изучить взаимное расположение прямой и плоскости.
Объектом исследования в данной работе является взаимное расположение прямых в пространстве, также взаимное расположение прямой и плоскости.
В соответствии с поставленной целью в работе должны быть решены следующие задачи:
1)рассмотреть и изучить основные способы задания прямой на плоскости и в пространстве;
2)изучить взаимное расположение прямых в пространстве;
3)изучить взаимное расположение прямой и плоскости.
При выполнении работы используется монографический метод исследования, математический метод (метод визуализации данных (функции, графики).
Теоретическую и методическую основы курсовой работы составляют труды отечественных ученых по данному вопросу.
Глава I. Основные понятия
1.1 Основные определения
Что нам известно о прямых? Что на чертеже мы можем изобразить лишь часть прямой, а всю прямую мы представляем себе простирающейся бесконечно в обе стороны.
В курсе элементарной геометрии не дается определения прямой, так, как прямая является основным, неопределяемым геометрическим объектом. Основные свойства прямой задаются аксиомами, а остальные выводятся из аксиом логическим путем. Однако, пользуясь понятием коллинеарности векторов, можно определить геометрическое место всех точек, принадлежащих прямой. В самом деле, если М0 – произвольная точка прямой l, а p – ненулевой вектор, параллельный ей, то, очевидно, каждая точка M прямой характеризуется условием: вектор M0M коллинеарен p. Обратно, если вектор M0M коллинеарен p, то точка M принадлежит прямой l. Таким образом, точка M принадлежит прямой l тогда и только тогда, когда вектор M0M коллинеарен p. Это определение может быть использовано для того, чтобы написать уравнение геометрического места точек, принадлежащих прямой, или коротко уравнение прямой. В аналитической геометрии термин «прямая» понимается в смысле совокупности всех точек, принадлежащих некоторой прямой, «уравнение прямой» понимается в смысле уравнения геометрического места этих точек.1
(Плоскость - одно из основных понятий геометрии. При систематическом изложении геометрии понятие "П." обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Некоторые характеристические свойства П.: 1) П. есть поверхность, содержащая полностью каждую прямую, соединяющую любые её точки. 2) П. есть множество точек, равноотстоящих от двух заданных точек2.
Пространство в математике, логически мыслимая форма (или структура), служащая средой, в которой осуществляются другие формы и те или иные конструкции. Например, в элементарной геометрии плоскость или пространство служат средой, где строятся разнообразные фигуры. В большинстве случаев в П. фиксируются отношения, сходные по формальным свойствам с обычными пространственными отношениями (расстояние между точками, равенство фигур и др.), так что о таких П. можно сказать, что они представляют логически мыслимые пространственно-подобные формы.
1.2 Различные способы задания прямой на плоскости
Сейчас я перечислю основные способы, которыми можно задать конкретную прямую на плоскости. Это знание очень полезно с практической точки зрения, так как на нем основывается решение очень многих примеров и задач. Уравнение прямой линии на плоскости в заданном на ней аффинном или ортонормированном репере в зависимости от способа задания может принимать различные виды.3
А) Прямая l задана начальной точкой М0(; и направляющим вектором =():
– параметрические уравнения (t – параметр);
=0, (если – канонические уравнения.
Б) Прямая l задана двумя различными точками :
=0 или = (если ).
В) Прямая l задана величинами a и b направленных отрезков, отсекаемых ею на осях Ox и Oy: 4
+=1 - уравнение прямой «в отрезках».
Г) Прямая l задана начальной точкой () и угловым коэффициентом k:
y-
y=kx+b (здесь
y=kx (здесь
Д) Прямая l задана начальной точкой :
Последнее уравнение может быть использовано только для случая, когда заданный репер является ортонормированным.
Каждое из указанных выше уравнений можно привести к следующему виду:
Ax+By+C=0 (1)
Уравнение (1) называется общим уравнением прямой.
Из этого уравнения можно определить координаты двух векторов этой прямой: направляющего (||l) и нормального вектора (l):
1.3 Различные способы задания прямой в пространстве
Уравнение плоскости в трехмерном пространстве в заданном аффинном или ортонормированном репере в зависимости от способа задания может принимать различные виды.
А) Плоскость П задана начальной точкой и парой направляющих векторов () и ()( не параллелен ). 5
Такую пару векторов будем называть направляющей площадкой плоскости П и использовать для нее символ <,>.
– параметрические уравнения плоскости (u, v - параметры);
= 0 – каноническое уравнение плоскости.
Б) Плоскость П задана тремя точками:
, , .
= 0 – уравнение плоскости, заданной тремя точками.
В) Плоскость П задана величинами a, b, с направленных отрезков, отсекаемых ею на осях Ox, Oy, Oz декартовой системы координат.6
+ + = 1 – уравнение плоскости «в отрезках».
Г) Плоскость П задана начальной точкой нормальным вектором =(
)=0 – это уравнение возможно лишь для случая, когда заданный репер ортонормированный.)
Каждое из записанных выше уравнений может быть приведено к виду:
Ax+By+Cz+D=0, которое называется общим уравнением плоскости. Зная общее уравнение плоскости, легко определить координаты её нормального вектора: =(A;B;C).
Глава II. Взаимное расположение прямых в пространстве
2.1 Параллельные прямые
Ещё со школы мы помним, что «параллельные прямые — это те, которые не пересекаются». В пространстве, однако, для параллельности прямых нужно одно дополнительное условие.
Определение: две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.7
Таким образом, помимо «непересечения» требуется, чтобы прямые лежали в одной плоскости. На рис. 1 показаны параллельные прямые a и b; через них проходит (единственная) плоскость .
Рис. 1. Параллельные прямые
Параллельность обладает важным свойством транзитивности. Именно, для трёх различных прямых a, b и c выполнено:
a ║ b и b ║ c a ║ c. (две различные прямые, параллельные третьей прямой, параллельны между собой).
2.2 Пересекающиеся прямые
Две различные прямые называются пересекающимися, если они имеют общую точку. Точка пересечения единственна: если две прямые имеют две общие точки, то они совпадают.
Пересекающиеся прямые изображены на рис. 2. Прямые a и b, как видим, пересекаются в точке A.
Рис. 2. Пересекающиеся прямые
Заметьте, что существует единственная плоскость, проходящая через две пересекающиеся прямые.
2.3 Скрещивающиеся прямые
Если две прямые пересекаются или параллельны, то, как мы видели, через них можно провести плоскость (и притом единственную). Возможна также ситуация, когда через две прямые плоскость провести нельзя.
Определение: две прямые называются скрещивающимися, если они не параллельны и не пересекаются.8
Равносильное определение такое: две прямые называются скрещивающимися, если они не лежат в одной плоскости.
На рис. 3 показаны скрещивающиеся прямые a и b.
Рис. 3. Скрещивающиеся прямые
Важный факт состоит в том, что через две скрещивающиеся прямые можно провести две параллельные плоскости.
Все три рассмотренных варианта взаимного расположения прямых можно видеть в треугольной призме (рис. 4).
Рис. 4. Взаимное расположение двух прямых
Именно, прямые AB и BC пересекаются (левый рисунок); прямые BC и параллельны (рисунок в центре); прямые AB и скрещиваются (правый рисунок).
Глава III. Взаимное расположение прямой и плоскости
3.1 Прямая параллельна плоскости
Прямая параллельна плоскости, если она не имеет с плоскостью общих точек. На рис. 5 прямая l параллельна плоскости π.
Рис. 5. Прямая параллельна плоскости
Признак параллельности прямой и плоскости: если прямая l параллельна некоторой прямой, лежащей в плоскости, то прямая l параллельна этой плоскости.9
Давайте посмотрим, как работает этот признак. Пусть - треугольная призма, в которой проведена плоскость BC (рис. 6).
Рис. 6. Прямая параллельна плоскости ВС
Поскольку боковые грани призмы являются параллелограммами, имеем ║BC. Но прямая BC лежит в плоскости BC. Поэтому в силу признака параллельности прямой и плоскости мы заключаем, что прямая параллельна плоскости BC.
Другое важное утверждение, которое нередко используется в задачах, - это теорема о пересечении двух плоскостей, одна из которых проходит через прямую, параллельную другой плоскости.
Теорема. Пусть прямая l параллельна плоскости π. Если плоскость σ проходит через прямую l и пересекает плоскость π по прямой m, то m║l.
Рис. 7. К теореме
Если прямая параллельна плоскости, то точка (а, значит, и любая точка данной прямой) не удовлетворяет уравнению плоскости: .
Таким образом, условие параллельности прямой и плоскости записывается следующей системой:
|