Навигация по странице:
|
Жи́дкие криста́ллы. Жидкие кристаллы
|
Название |
Жидкие кристаллы
|
Анкор |
Жи́дкие криста́ллы.doc |
Дата |
24.04.2017 |
Размер |
131.5 Kb. |
Формат файла |
|
Имя файла |
Жи́дкие криста́ллы.doc |
Тип |
Документы
#1969
|
|
Жи́дкие криста́ллы (сокращённо ЖК) — это фазовое состояние, в которое переходят некоторые вещества при определенных условиях (температура, давление, концентрация в растворе). Жидкие кристаллы обладают одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия). По структуре ЖК представляют собой вязкие жидкости, состоящие из молекул вытянутой или дискообразной формы, определённым образом упорядоченных во всем объёме этой жидкости. Наиболее характерным свойством ЖК является их способность изменять ориентацию молекул под воздействием электрических полей, что открывает широкие возможности для применения их в промышленности. По типу ЖК обычно разделяют на две большие группы: нематики и смектики. В свою очередь нематики подразделяются на собственнонематические и холестерические жидкие кристаллы.
История открытия жидких кристаллов
Жидкие кристаллы открыл в 1888 году австрийский ботаник Ф. Рейнитцер. Он обратил внимание, что у кристаллов холестерилбензоата и холестерилацетата было две точки плавления и, соответственно, два разных жидких состояния — мутное и прозрачное. Однако, учёные не обратили особого внимания на необычные свойства этих жидкостей. Долгое время физики и химики в принципе не признавали жидких кристаллов, потому что их существование разрушало теорию о трёх состояниях вещества:твёрдом, жидком и газообразном. Учёные относили жидкие кристаллы то к коллоидным растворам, то к эмульсиям. Научное доказательство было предоставлено профессором университета Карлсруэ Отто Леманном (нем. Otto Lehmann) после многолетних исследований, но даже после появления в 1904 году написанной им книги «Жидкие кристаллы» открытию не нашлось применения.
В 1963 г. американец Дж. Фергюсон (англ. James Fergason) использовал важнейшее свойство жидких кристаллов — изменять цвет под воздействием температуры — для обнаружения невидимых простым глазом тепловых полей. После того, как ему выдали патент на изобретение (U.S. Patent 3 114 836), интерес к жидким кристаллам резко возрос.
В 1965 г. в США собралась Первая международная конференция, посвящённая жидким кристаллам. В 1968 г. американские учёные создали принципиально новыеиндикаторы для систем отображения информации. Принцип их действия основан на том, что молекулы жидких кристаллов, поворачиваясь в электрическом поле, по-разному отражают и пропускают свет. Под воздействием напряжения, которое подавали на проводники, впаянные в экран, на нём возникало изображение, состоящее из микроскопических точек. И всё же только после 1973 г., когда группа английских химиков под руководством Джорджа Грея (англ. George William Gray) получила жидкие кристаллы из относительно дешёвого и доступного сырья, эти вещества получили широкое распространение в разнообразных устройствах.
Виды жидких кристаллов
Термотропные ЖК, образующиеся в результате нагревания твердого вещества и существующие в определенном интервале температур и давлений.
Лиотропные ЖК, которые представляют собой двух или более компонентные системы, образующиеся в смесях стержневидных молекул данного вещества и воды (или других полярных растворителей). Эти стержневидные молекулы имеют на одном конце полярную группу, а большая часть стержня представляет собой гибкую гидрофобную углеводородную цепь. Такие вещества называются амфифилами.
Термотропные ЖК подразделяются на три больших класса:
1, Нематические жидкие кристаллы. В этих кристаллах отсутствует дальний порядок в расположении центров тяжести молекул, у них нет слоистой структуры, их молекулы скользят непрерывно в направлении своих длинных осей, вращаясь вокруг них, но при этом сохраняют ориентационный порядок: длинные оси направлены вдоль одного преимущественного направления. Они ведут себя подобно обычным жидкостям. Нематические фазы встречаются только в таких веществах, у молекул которых нет различия между правой и левой формами, их молекулы тождественны своему зеркальному изображению (ахиральны). Примером вещества, образующего нематический ЖК, может служить N-(пара-метоксибензилиден)-пара-бутиланилин.
2, Смектические жидкие кристаллы имеют слоистую структуру, слои могут перемещаться относительно друг друга. Толщина смектического слоя определяется длиной молекул (преимущественно, длиной парафинового «хвоста»), однако вязкость смектиков значительно выше, чем у нематиков, и плотность по нормали к поверхности слоя может сильно меняться. Типичным является терефтал-бис (nара-бутиланилин):
3, Холестерические жидкие кристаллы — образуются, в основном, соединениями холестерина и других стероидов. Это нематические ЖК, но их длинные оси повернуты друг относительно друга так, что они образуют спирали, очень чувствительные к изменению температуры вследствие чрезвычайно малой энергии образования этой структуры (порядка 0,01 Дж/моль). В качестве типичного холестерика можно назвать амил-пара-(4-цианобензилиденамино)- циннамат
Указанные типы структур относятся к так называемым термотропным жидким кристаллам, образование которых осуществляется только при термическом воздействии на вещество (нагревание или охлаждение). На рис. 2 показаны схемы расположения стержне- и дискообразных молекул в трех перечисленных структурных модификациях жидких кристаллов.
Свойства ЖК
Жидкий кристалл обладает свойствами и жидкости, и кристалла:
Подобно обычной жидкости, жидкий кристалл обладает текучестью и принимает форму сосуда, в который он помещен.
Он обладает свойством, характерным для кристаллов - упорядочиванием в пространстве молекул, образующих кристалл.
Не имеют жёсткую кристаллическую решётку.
Наличие порядка пространственной ориентации молекул
Осуществление более сложного ориентационного порядка молекул, чем у кристаллов.
Упругость жидкого кристалла
Оптические наблюдения дали значительное количество фактов о свойствах жидкокристаллической фазы, которые необходимо было понять и описать. Одним из первых достижений в описании свойств жидких кристаллов, как уже упоминалось во введении, было создание теории упругости жидких кристаллов. В современной форме она была в основном сформулирована английским ученым Ф. Франком в пятидесятые годы.
Анизотропия физических свойств — основная особенность жидких кристаллов
Поскольку основным структурным признаком жидких кристаллов является наличие ориентационного порядка, обусловленного анизотропной формой молекул, то естественно, что все их свойства так или иначе определяются степенью ориентаци-ониого упорядочения. Количественно степень упорядоченности жидкого кристалла определяется параметром порядка S, введенным В.И. Цветковым в 40-х годах:
S = 0,5 á( 3cos2q – 1)ñ (2)
где q - угол между осью индивидуальной молекулы жидкого кристалла и преимущественным направлением всего ансамбля, определяемым директором n (рис. 2) (угловые скобки означают усреднение по всем ориентациям молекул). Легко понять, что в полностью разупорядоченной изотропно-жидкой фазе S = 0, а в полностью твердом кристалле S = 1.Параметр порядка жидкого кристалла лежит в пределах от 0 до 1. Именно существование ориентационного порядка обусловливает анизотропию всех физических свойств жидких кристаллов. Так, анизотропная форма молекул каламитиков определяет появление двойного лучепреломления (Dn) и диэлектрической анизотропии (De), величины которых могут быть выражены следующим образом:
Dn|| = n|| – n^ и De|| = e|| – e^ (3)
где n||, n^ и e||, e^ — показатели преломления и диэлектрические постоянные соответственно, измеренные при параллельной и перпендикулярной ориентации длинных осей молекул относительно директора. Значения Dn для ЖК-соединений обычно весьма велики и меняются в широких пределах в зависимости от их химического строения, достигая иногда величины порядка 0,3-0,4. Величина и знак De зависят от соотношения между анизотропией поляризуемости молекулы, величиной постоянного дипольного момента m, а также от угла между направлением дипольного момента и длинной молекулярной осью. Примеры двух ЖК-соединений, характеризующихся положительной и отрицательной величиной De, приведены ниже:
Нагревание жидкого кристалла, понижая его ориентационный порядок, сопровождается монотонным снижением значений Dn и De, так что в точке исчезновения ЖК-фазы приТпр анизотропия свойств полностью исчезает.
В то же время именно анизотропия всех физических характеристик жидкого кристалла в сочетании с низкой вязкостью этих соединений и позволяет с высокой легкостью и эффективностью осуществлять ориентацию (и переориентацию) их молекул под действием небольших "возмущающих" факторов (электрические и магнитные поля, механическое напряжение), существенно изменяя их структуру и свойства. Именно поэтому жидкие кристаллы оказались незаменимыми электрооптически-активными средами, на основе которых и было создано новое поколение так называемых ЖК-индикаторов.
Как управлять жидкими кристаллами
Основой любого ЖК-индикатора является так называемая электрооптическая ячейка, устройство которой изображено на рис. 5. Две плоские стеклянные пластинки с нанесенным на них прозрачным проводящим слоем из окиси олова или окиси индия, выполняющие роль электродов, разделяются тонкими прокладками из непроводяшего материала (полиэтилен, тефлон). Образовавшийся зазор между пластинками, который колеблется от 5 до 50 мкм (в зависимости от назначения ячейки), заполняется жидким кристаллом, и вся"сандвичевая" конструкция по периметру "запаивается" герметикой или другим изолирующим материалом (рис. 5). Полученная таким образом ячейка может быть помешена между двумя очень тонкими пленочными поляризаторами, плоскости поляризации которых образуют определенный угол с целью наблюдения эффектов ориентации молекул под действием электрического поля. Приложение к тонкому ЖК-слою даже небольшого электрического напряжения (1,5—3 В) вследствие относительно низкой вязкости и внутреннего трения анизотропной жидкости приводит к изменению ориентации жидкого кристалла. При этом важно подчеркнуть, что электрическое поле воздействует не на отдельные молекулы, а на ориентированные группы молекул (рои или домены), состоящие из десятков тысяч молекул, вследствие чего энергия электростатического взаимодействия значительно превышает энергию теплового движения молекул. В итоге жидкий кристалл стремится повернуться таким образом, чтобы направление максимальной диэлектрической постоянной совпало с направлением электрического поля. А вследствие большой величины двулучепреломления Dn процесс ориентации ведет к резкому изменению структуры и оптических свойств жидкого кристалла.
Впервые воздействие электрических и магнитных полей на жидкие кристаллы было исследовано русским физиком В.К. Фредериксом, и процессы их ориентации получили название электрооптических переходов (или эффектов) фредерикса. Один из трех, наиболее часто встречающихся вариантов ориентации молекул показан на рис. 5. а. Этопланарная ориентация, которая характерна для нематиков с отрицательной диэлектрической анизотропией (De <� 0), когда длинные оси молекул параллельны стеклянным поверхностям ячейки.
Рис. 5. Электрооптическая ячейка типа "сандвич" с планарной ориентацией молекул (а) и схемы расположения молекул жидких кристаллов в ячейке: б - гомеотропная и в - твист-ориентация. 1 - слой жидкого кристалла. 2 - стеклянные пластинки, 3 - токопроводящий слой, 4 - диэлектрическая прокладка, 5 - поляризатор, 6 - источник электрического напряжения.
Гомеотропная ориентация реализуется для жидких кристаллов с положительной диэлектрической анизотропией (De > 0) (рис. 5, б). В этом случае длинные оси молекул с продольным дипольным моментом располагаются вдоль направления поля перпендикулярно поверхности ячейки. И наконец, возможна твист- или закрученная ориентация молекул (рис. 5, в). Такая ориентация достигается специальной обработкой стеклянных пластинок, при которой длинные оси молекул поворачиваются в направлении от нижнего к верхнему стеклу электрооптической ячейки. Обычно это достигается натиранием стекол в разных направлениях или использованием специальных веществ-ориентантов, задающих направление ориентации молекул.
В основе действия любого ЖК-индикатора лежат структурные перестройки между указанными типами ориентации молекул, которые индуцируются при приложении слабого электрического поля. Рассмотрим, например, как работает ЖК-циферблат электронных часов. Основу циферблата составляет уже знакомая нам электрооптическая ячейка, правда несколько дополненная (рис. 6, а, б). Помимо стекол с напыленными электродами, двух поляризаторов, плоскости поляризации которых противоположны, но совпадают с направлением длинных осей молекул у электродов, добавляется еще располагаюшееся под нижним поляризатором зеркало (на рисунке не показано). Нижний электрод обычно делают сплошным, а верхний - фигурным, состоящим из семи небольших сегментов-электродов, с помощью которых можно изобразить любую цифру или букву (рис. 6, в). Каждый такой сегмент "питается" электричеством и включается согласно заданной программе от миниатюрного генератора. Исходная ориентация нематика закрученная, то есть мы имеем так называемую твист-ориентацию молекул (см. рис. 5, в и 6, а). Свет падает на верхний поляризатор и становится плоскополяризованным в соответствии с его поляризацией.
Рис. 6 Схема работы ЖК-индикатора на твист-эффекте: а — до включения электрического поля, б — после включения поля, в — семисегментной буквенно-цифровой электрод, управляемый электрическим полем.
При отсутствии электрического поля (то есть в выключенном состоянии) свет, "следуя" твист-ориентации нематика, меняет свое направление в соответствии с оптической осью нематика и на выходе будет иметь то же направление поляризации, что и нижний поляризатор (см. рис. 6, а). Другими словами, свет отразится от зеркала, и мы увидим светлый фон. При включении электрического поля для нематического жидкого кристалла с положительной диэлектрической анизотропией (De > 0) произойдет переход от закрученной твист-ориентации к гомеотропной ориентации молекул, то есть длинные оси молекул повернутся в направлении, перпендикулярном к электродам, и спиральная структура разрушится (рис. 6, б). Теперь свет, не изменив направления исходной поляризации, совпадающей с поляризацией верхнего поляризатора, будет иметь направление поляризации, противоположное нижнему поляроиду, а они, как видно на рис. 6, б, находятся в скрещенном положении. В этом случае свет не дойдет до зеркала, и мы увидим темный фон. Другими словами, включая поле, можно рисовать любые темные символы (буквы, цифры) на светлом фоне, используя, например, простую семисегментную систему электродов (рис. 6, в).
Таков принцип действия любого ЖК-индикатора. Основными преимуществами этих индикаторов являются низкие управляющие напряжения (1,5-5 В), малые потребляемые мощности (1—10 мкВт), высокая контрастность изображения, легкость встраивания в любые электронные схемы, надежность в работе и относительная дешевизна.
Заключение
Итак, жидкие кристаллы обладают двойственными свойствами, сочетая в себе свойство жидкостей(текучесть) и свойство кристаллических тел (анизотропию). Их поведение не всегда удается описать с помощью привычных методов и понятий. Но именно в этом и заключена их привлекательность для исследователей, стремящихся познать еще неизведанное.
Недавно открыты и интенсивно исследуются жидкокристаллические полимеры, появились полимерные ЖК-сегнетоэлектрики, идет активное исследование гибкоцепныхэлементоорганических и металлсодержащих ЖК-соединений, образующих новые типы мезофаз. Мир жидких кристаллов бесконечно велик и охватывает широчайший круг природных и синтетических объектов, привлекая внимание не только ученых — физиков, химиков и биологов, но и исследователей-практиков, работающих в самых разнообразных отраслях современной техники (электронике, оптоэлектронике, информатике, голографии и т. п.).
|
|
|