Главная страница
Навигация по странице:

Теория авиационных двигателей (РИО). Меньшей массой (по сравнению с поршневыми двигателями) при данной мощности



Скачать 16.59 Mb.
Название Меньшей массой (по сравнению с поршневыми двигателями) при данной мощности
Анкор Теория авиационных двигателей (РИО).docx
Дата 26.04.2017
Размер 16.59 Mb.
Формат файла docx
Имя файла Теория авиационных двигателей (РИО).docx
Тип Документы
#3645
страница 1 из 21
  1   2   3   4   5   6   7   8   9   ...   21



ПРЕДИСЛОВИЕ
Изучение теории авиационных двигателей начинается с изучения теории отдельных элементов двигателя: компрессора, турбины, камеры сгорания, воздухозаборника и сопла. Затем исследуется рабочий процесс авиационных ГТД и влияние основных параметров этого процесса на данные двигателя. Далее рассматриваются особенности совместной работы основных элементов двигателя при его работе в полёте на установившихся режимах и эксплуатационные характеристики двигателей различных типов. Завершается изучение дисциплины рассмотрением неустановившихся режимы работы ГТД (запуск, приемистость и сброс оборотов) и изучением влияния различных условий эксплуатации на работу авиационных двигателей.
ВВЕДЕНИЕ
Двигатель - важнейшая составная часть конструкции любого самолета или вертолета. Весь прогресс в самолетостроении с самого начала зарождения авиации определялся, прежде всего, прогрессом в двигателестроении. Создание первых в мире самолетов стало возможным лишь тогда, когда был разработан достаточно легкий двигатель, способный развить мощность, необходимую для преодоления сопротивления воздуха в полете.

Последующее в первой половине прошлого века многократное увеличение дальности, скорости, высоты полета и грузоподъемности самолетов было обусловлено, прежде всего, созданием новых все более мощных и все более легких авиационных поршневых двигателей.

Но к средине 40-х годов ХХ века, когда скорости полета истребителей достигли 650 – 700 км/ч, выяснилось, что дальнейшее существенное увеличение скорости полёта при использовании обычной схемы силовой установки поршневой авиадвигатель – воздушный винт весьма проблематично. Дальнейший резкий рывок в скорости полета (до 900 – 1000 км/ч) стал возможным только благодаря переходу к турбореактивным двигателям (ТРД). Они обладают существенно меньшей массой (по сравнению с поршневыми двигателями) при данной мощности на большой скорости полета. Кроме того, применение этих двигателей исключает большие потери энергии в воздушном винте. Первые серийные ТРД – немецкие UMO-004 и BMW-003, начали устанавливаться на реактивные истребители Me-262 и He-162 в 1944 году.

Затем на пути еще большего увеличения скорости полета стал «звуковой барьер» - резкое увеличение сопротивления самолета при приближении скорости полета к скорости звука. И опять эта проблема была решена только с появлением турбореактивных двигателей, у которых за турбиной была установлена форсажная камера (ТРДФ), что позволило резко увеличит тягу двигателя при незначительном увеличении его массы. Первым в мире серийным истребителем, превысившим (в 1950 г.) скорость звука в горизонтальном полете, был самолет МиГ-17 с двигателем ВК-1Ф, снабженным форсажной камерой. В 1952 г. стал серийно выпускаться первый в мире сверхзвуковой истребитель МиГ-19 с двигателем РД-9Б (также с форсажной камерой). Он достигал в горизонтальном полёте скорости, в 1,6 раза превышающей скорость звука.

В настоящее время максимальная скорость полета истребителей в 2 – 3 раза превышает скорость звука, резко выросла их скороподъемность. Разрабатываются гиперзвуковые самолеты со скоростью полета в 5 – 6 и более превышающей скорость звука. Дальность полета ряда самолетов составляет несколько тысяч километров. Уже много лет существуют самолеты вертикального взлета и посадки, появились сверхманевренные истребители и т.д. Всё это достигнуто благодаря прогрессу в развитии авиационного двигателестроения, основным объектом которого в настоящее время являются газотурбинные двигатели (ГТД).

В современном вертолетостроении также широко применяются ГТД, имеющие (при равной мощности) в несколько раз меньшую массу и меньшие габариты, чем поршневые двигатели (ПД). Последние используются сейчас только в так называемой легкомоторной авиации – на легких спортивных, маломестных и т.п. самолетах и вертолетах.

При этом необходимо отметить, что авиационное двигателестроение – это высочайший уровень научных исследований и высоких технологий во имя достижения минимальных значений веса, габаритов и расхода топлива при требуемой мощности (тяге) при высоком уровне надежности и возможно меньшей трудоемкости технического обслуживания. Поэтому создание нового авиационного двигателя с высокими показателями по массе, габаритам и топливной экономичности – весьма трудоемкий процесс, требующий большого искусства конструкторов, применения высоких технологий, сложных и длительных испытаний (на земле и в полете) и занимающий поэтому длительный период времени, как правило, 12 – 15 лет. Соответственно, авиационные ГТД принято делить на «поколения», хотя следует признать, что такое деление условно. Так, например, двигатели, установленные на пассажирских самолетах Ту-204, Ту-214, Ил-96, истребителях МиГ29 и Су-27 относят к 4-му поколению, а разрабатываемые в настоящее время новые ГТД – к 5-му поколению.

Теория авиационных ГТД сложилась как самостоятельная научная дисциплина в основном после второй мировой войны. Однако ряд фундаментальных результатов в этой области был получен значительно раньше. Еще в работах Н.Е. Жуковского «О реакции втекающей и вытекающей жидкости» (1882 и 1886 г.г.) и «К теории судов, приводимых в движение силой реакции вытекающей воды» (1908 г.) были определены понятия силы тяги и тягового КПД водяного реактивного двигателя. А работы Н.Е. Жуковского по вихревой теории гребных винтов и осевых вентиляторов (1912 и 1918 г.г.) легли в основу современной теории авиационных осевых компрессоров.

Основателем современной теории воздушно-реактивных двигателей (ВРД) является академик Б.С. Стечкин, который еще в 1929 г. опубликовал работу «Теория воздушного реактивного двигателя». В дальнейшем

Б.С. Стечкин внес большой вклад в развитие теории и методов расчета характеристик ВРД и их элементов. Под его редакцией в 1956 и 1958 гг. был издан первый полный учебник по курсу «Теория реактивных двигателей», получивший широкое признание у нас в стране, а также переведенный и изданный в ряде зарубежных стран.

Значительный вклад в развитие теории газовых турбин и газотурбинных двигателей внес проф. В.В. Уваров. Им разработана теория профилирования лопаток газовых турбин, впервые проведены экспериментальные и теоретические исследования по созданию высокотемпературных газотурбинных двигателей.

После Великой Отечественной войны авиадвигателестроительная промышленность нашей страны сумела быстро приступить к созданию реактивных двигателей. Первыми крупносерийными турбореактивными двигателями (ТРД) были двигатели РД-45 и ВК-1, созданные под руководством известного авиаконструктора В.Я. Климова в конце 40 - начале 50 г.г. прошлого века в Ленинграде. Эти двигатели были разработаны на основе английского ТРД «Нин». Они устанавливались на истребителях МиГ-15, МиГ-15 бис, хорошо зарекомендовавших себя в корейской войне, и фронтовых бомбардировщиках Ил-28.

В последующие годы в ОКБ-300 (г. Москва) выдающимся авиаконструктором А.А. Микулиным, заместителем которого был Б.С. Стечкин, был создан ряд выдающихся по своим параметрам ТРД. Среди них АМ-3 (самый мощный для того времени ТРД, устанавливаемый на тяжелом бомбардировщике ТУ-16 и первом в мире реактивном лайнере ТУ-104), РД-9Б с первой в мире трансзвуковой ступенью в компрессоре и Р11-300, конструкция компрессора которого была оригинальной.

Превосходящие по ряду параметров мировой уровень авиационные ГТД были созданы также под руководством выдающихся конструкторов А.М. Люльки, Н.Д. Кузнецова, С.К Туманского, В.А. Добрынина и других.

В разработке авиационных двигателей видную роль играет Центральный институт авиационного моторостроения (ЦИАМ им. П.И. Баранова), являющийся головным институтом отрасли. ЦИАМ является научным центром, обеспечивающим формирование технического облика перспективных двигателей, создание научно-технического задела (НТЗ) для их проектирования и разработку новых передовых технологий. Он обладает крупнейшей в Европе уникальной экспериментальной базой для наземных и высотных испытаний авиадвигателей, функционирующей с 1955 г.

В настоящее время на самолетах и вертолетах различного назначения применяются весьма разнообразные типы авиационных двигателей, реализующие термодинамический цикл Брайтона. Их можно классифицировать следующим образом.
Турбореактивный одноконтурный двигатель (ТРД)
Основными элементами такого двигателя являются следующие (рис. 1.1):

  1. Компрессор. Повышает давление воздуха, поступающего из входного устройства, и проталкивает его далее по тракту двигателя. Давление повышается в компрессоре в 8...10 раз и более.

  2. Камера сгорания. В ней воздух смешивается с топливом, смесь воспламеняется, сгорает и на выходе из нее температура газа достигает в ТРД 1100...1300 оС (1400...1600 К).








Рис. 1.1. Схема одноконтурного турбореактивного двигателя (ТРД)

Рис. 1.2. Схема одноконтурного

турбореактивного двигателя

с форсажем (ТРДФ)




  1. Турбина. Предназначена для вращения ротора компрессора, установленного с ней на одном валу. Горячие газы, выходящие из камеры сгорания, обладают гораздо большим запасом энергии, чем сравнительно холодный воздух за компрессором. При расширении в турбине он способен в большой мере отдавать эту энергию. Поэтому давление газа понижается в турбине в значительно меньшей мере, чем оно повышалось в компрессоре. В результате за турбиной давление существенно превышает атмосферное давление.

  2. Реактивное сопло. В нем за счет падения давления до атмосферного происходит значительное ускорение выходящего из турбины потока газа и выбрасывание реактивной струи с большой скоростью в направлении, противоположном направлению полета. В результате выбрасывания этой струи на двигатель действует сила отдачи, направленная по полету, т.е. сила тяги.

  3. В рабочем процессе двигателя участвует также входное устройство (воздухозаборник). Он служит для забора воздуха из атмосферы и подвода его к двигателю ( в полете в нем может происходить также повышение давления воздуха). Воздухозаборник может быть рассчитан как на дозвуковые, так и на сверхзвуковые скорости полета. Так как в большинстве случаев воздухозаборник является частью конструкции самолета, он обычно не показывается на схемах двигателей.


Турбореактивный двигатель с форсажом (ТРДФ)
Его схема отличается от схемы ТРД тем, что за турбиной установлена форсажная камера (рис. 1.2).В ней за счет дополнительного сжигания топлива температура газа повышается примерно до 2000 К. Это позволяет увеличить скорость реактивной струи на 30-40 % при незначительном увеличении массы двигателя, так как форсажная камера представляет собой тонкостенный канал. Поэтому тяга увеличивается, но при значительном ухудшении экономичности.

На сверхзвуковых скоростях полета включение форсажной камеры дает весьма большой прирост тяги. Поэтому такие двигатели применяются на самолетах, рассчитанных на сверхзвуковые скорости полета: МиГ-21, МиГ-23, МиГ-27, Су-17, Су-24, Ту-144 и др.
Двухконтурный турбореактивный двигатель без смешения потоков (ТРДД)
Это основной тип двигателей, применяемых в настоящее время на многих пассажирских лайнерах, транспортных и военно-транспортных самолетах. Первое авторское свидетельство на ТРДД было получено будущим академиком Архипом Михайловичем Люлька еще в 30-х годах ХХ века.







Рис. 1.3. Схема двухконтурного турбореактивного двигателя без смешения потоков (ТРДД)


Рис. 1.4. Схема двухконтурного

турбореактивного двигателя со

смешением потоков (ТРДДсм)


Поступающий в двигатель воздух разделяется на 2 части (рис. 1.3). Одна часть поступает за компрессором, как и в ТРД, в камеру сгорания, в турбину и сопло. Это – так называемый внутренний контур. Вторая же часть, пройдя только несколько первых ступеней компрессора, поступает далее в наружный контур, канал которого заканчивается вторым соплом (кольцевым). При том же расходе топлива, как в ТРД, тяга двигателя получается большей за счет увеличения отбрасываемой соплами массы воздуха и газа. Это делает такой двигатель значительно более экономичным, чем ТРД (на дозвуковых скоростях полёта). По такой схеме выполнены, например, двигатели Д-18Т, установленные на самолете Ан-124 «Руслан», а также проектируемый двигатель ПД-14.

Группу первых степеней компрессора, нагнетающих воздух и во внутренний и во внешний контур, часто называют вентилятором.

Двухконтурный турбореактивный двигатель

со смешением потоков (ТРДДсм)
В ряде случаев оказывается целесообразным воздух, поступающий из вентилятора во второй контур, не выпускать далее через отдельное кольцевое сопло, а смешивать с газами, выходящими из турбины, и направлять затем в общее сопло. Этот тип двигателей называется ТРДД со смешением потоков за турбиной (ТРДДсм, рис. 1.4). Такую схему имеют, например, двигатели

Д-30КП самолета Ил-76, ПС-90А самолетов Ту-204, Ту-214, Ил-96 и др.

На современных сверхзвуковых самолетах устанавливаются двухконтурные турбореактивные двигатели с форсажной камерой, которая расположена за так называемой камерой смешения, обеспечивающей перемешивание воздуха, поступающего в неё из вентилятора, и газа, поступающего из турбины

По этой схеме выполнены двигатели самолетов Миг-29, Су-27, Ту-160, многих самолетов ВВС США, НАТО и др.

Все рассмотренные выше двигатели создают силу тяги непосредственно за счет реакции (отдачи) струи газов, выбрасываемой из сопла. Поэтому они называются двигателями прямой реакции.

Для повышения давления воздуха, поступающего в камеру сгорания, в них используется компрессор, приводимый во вращение газовой турбиной. Поэтому их называют газотурбинными двигателями (ГТД).

Кроме того, все они засасывают воздух из атмосферы, а выбрасывают из сопла воздух или продукты сгорания топливо-воздушной смеси, поэтому называются воздушно-реактивными двигателями (ВРД).

Двигатели непрямой реакции



Рис. 1.5. Схема вертолетного

турбовального двигателя (ТВаД)


На летательных аппаратах применяются также двигатели, создающие тягу не непосредственно за счет реакции струи газов, а за счет привода во вращение различных воздушных винтов (тянущих самолёт или несущих вертолёт). Их называют двигателями непрямой реакции.

На легких самолетах и вертолетах вспомогательного назначения еще устанавливаются часто поршневые двигатели (ПД), аналогичные бензиновым двигателям автомобилей, или газотурбинные двигатели непрямой реакции следующих типов:


Турбовальные двигатели (ТВаД)
Так называются двигатели, устанавливаемые на вертолетах (рис. 1.5). В его турбине газы расширяются до атмосферного давления. В результате мощность турбины оказывается значительно больше, чем необходимо для вращения компрессора. Избыток мощности передается через выходной вал двигателя и редуктор на несущий винт вертолета.

Турбовинтовые двигатели (ТВД)
ТВД отличается от ТВаД, главным образом, тем, что в полете со скоростью

600-900 км/ч оказывается целесообразным иметь за турбиной давление несколько выше атмосферного. Тогда в сопле, установленном за турбиной (рис. 1.6), газы приобретают скорость, несколько большую скорости полета, и за счет этого создается (в дополнение к тяге винта) небольшая реактивная тяга (как и у ТРД). Избыточная мощность турбины передается через вал на воздушный винт, расположенный обычно впереди двигателя.




Рис. 1.6. Схема турбовинтового

двигателя (ТВД)

Рис. 1.7. Турбовинтовентиляторный

двигатель Д-27


Так как частота вращения турбины имеет порядок 10об/мин, а тянущего воздушного винта 10 об/мин, то в передней части ТВД устанавливается зубчатая передача (редуктор).

На некоторых самолётах на турбовинтовые двигатели устанавливаются не обычные воздушные винты, а два многолопастных соосных воздушных винта, вращающихся в противоположные стороны (рис. 1.7). Такие водушные винты называются винтовнтиляторами, а ГТД, приводящие их во вращение – турбовинтовентиляторными двигателями (ТВВД).


  1   2   3   4   5   6   7   8   9   ...   21
написать администратору сайта