Навигация по странице:
|
множество. Понятие о множестве и его свойства Множество
понятие о множестве и его свойства
Множество
Множество – это совокупность элементов, которые воспринимаются как единое целое. Множество состоит из элементов. Множество ассоциируется с понятием группа. Чем больше элементов во множестве, тем множество мощнее. В детском саду множества могут быть конечными, бесконечными, пустыми и состоять из пяти элементов.
Конечные множества – это такие элементы, которые можно посчитать;
Бесконечное множество – это такое множество, в которых элементы посчитать невозможно (натуральный ряд чисел, звезды, песчинки…);
-
Дискретные или непрерывные множества – это такое множество в которых каждый элемент можно воспринимать отдельно;
Непрерывные множества – когда элементы отдельно не воспринимаются (длина стола, стакан воды);
Упорядоченное множество – в которых между элементами существует порядок (натуральный ряд чисел…);
Множество предметов и явлений ребенком воспринимается различными анализаторами.
1-2 года. К 1-2 годам у детей накапливаются представления о множестве однородных предметов, которые отражаются в пассивной речи детей (построить домик и домики – единственное и множественное число).
Затем в активной речи дети начинают использовать множественное и единственное число. На этом этапе множество еще не имеет четких границ для ребенка и не воспринимается элемент за элементом, не осознается количественная сторона множества.
Дети понимают смысл слова «много» и «мало», но эти слова не имеют четкой количественной характеристики, ассоциируются со словами «большой», «маленький».
2-3 года. Дети воспринимают множество в его границах, умеют сосредотачивать свое внимание на границах множества, а четкое понимание внутренних элементов еще отсутствует. При наложении предметов на рисунки дети заполняют всю часть карточки между крайними элементами, но не воспринимают количество. Легче воспринимают множество, если оно расположено линейно, в ряд.
3-4 года. Ребенок становится более требовательным к однородному составу множества, т.е. он считает, что множество всегда состоит из однородных элементов. На восприятие множества еще оказывают влияние качественно-пространственные признаки (форма, величина, расстояние между элементами, расположение по-разному в пространстве).
4-5 лет. На этом этапе восприятие только однородных множеств играет отрицательную роль, поэтому необходимо предлагать детям производить различные операции с множествами: составлять единое множество из 2-х групп, каждая из которых обладает своими качественными особенностями, несущественными для всего множества в целом.
Множества обозначаются заглавными латинскими буквами, а их элементы – строчными. Запись aR означает, что элемент а принадлежит множеству R , то есть а является элементом множества R . В противном случае, когда а не принадлежит множеству R , пишут aR .
Два множества А и В называются равными ( А =В ), если они состоят из одних и тех же элементов, то есть каждый элемент множества А является элементом множества В и наоборот, каждый элемент множества В является элементом множества А .
Говорят, что множество А содержится в множестве В ( рис.1 ) или множество А является подмножеством множества В ( в этом случае пишут А В ), если каждый элемент множества А одновременно является элементом множества В . Эта зависимость между множествами называется включением. Для любого множества А имеют место включения: А и А А .
Сумма (объединение) множеств А и В ( пишется А В ) есть множество элементов, каждый из которых принадлежит либо А, либоВ. Таким образом, е А В тогда и только тогда, когда либо е А ,либо е В .
Произведение (пересечение) множеств А и В ( пишется А В , рис.2 ) есть множествоэлементов, каждый из которых принадлежит иА, и В. Таким образом, е А В тогда и только тогда, когда е А и е В .
Разность множеств А и В ( пишется А – В , рис.3 ) есть множествоэлементов, которые принадлежат множеству А , но не принадлежат множеству В. Это множество называется также дополнением множества В относительно множества А.
Симметричная разность множеств А и В ( пишется А \ В ) есть множество:
А \ В = ( А – В ) ( В – А ).
Свойства операций над множествами:
П р и м е р ы. 1. Множество детей является подмножеством всего населения.
2. Пересечением множества целых чисел с множеством поло-
жительных чисел является множество натуральных чисел.
3. Объединением множества рациональных чисел с множест-
вом иррациональных чисел является множество действи-
тельных чисел.
4. Нуль является дополнением множества натуральных чисел
относительно множества неотрицательных целых чисел.
|
|
|