Навигация по странице:
|
Учебник для углубленного изучения физики
§ 8.2. Кристаллическая решетка
Правильность внешней формы твердых (кристаллических) тел обусловлена тем, что частицы (атомы, молекулы), из которых эти тела состоят, расположены относительно друг друга в определенном порядке, на строго определенных расстояниях друг от друга (см. гл. 2).
Вследствие теплового движения расстояния между частицами несколько меняются, так как они совершают колебания около определенных точек — положений равновесия частиц. Именно эти точки (они называются узлами) и расположены в определенном порядке.
В § 2.6 было введено понятие о кристаллической решетке как о пространственной решетке, которая получается, если узлы соединить прямыми линиями.
В пространственной решетке можно выделить наименьший фрагмент, повторением которого можно образовать всю решетку. Этот наименьший фрагмент называется элементарной ячейкой решетки. Так, элементарной ячейкой пространственной решетки кристалла криптона является куб (рис. 8.8). Длина ребра элементарной ячейки называется периодом кристаллической решетки. (Длины ребер элементарной ячейки могут быть различными по разным направлениям.) В монокристалле криптона такая ячейка повторяется много раз с неизменной ориентацией. На этом основании говорят, что в кристалле наблюдается дальний порядок в расположении атомов или других частиц (ионов, молекул и т. п.), из которых построен кристалл. Образно это можно себе представить так.
Рис. 8.8
Человек, уменьшенный до размеров атома, нашел бы, что путешествие в кристалле весьма однообразно. Перепрыгивая с атома на атом в каком-либо определенном направлении, он совершал бы прыжки одинаковой длины; расположение атомов справа и слева, над ним и под ним оставалось бы одним и тем же. Изменяя направление своего движения, человек быстро установил бы различие воспринимаемых картин. Он обнаружил бы, что расстояние между атомами изменилось, изменилось и их положение. Однако и новая картина повторялась бы до тех пор, пока он вновь не сменил бы направление перемещения.
Четыре типа кристаллов
Алмаз и парафиновая свеча... Алмаз — символ твердости; парафин, подобно воску, мягок и податлив. Сразу можно подумать, что полярности свойств соответствует полярность сочленения в единое целое тех отдельных элементов, из которых состоят эти вещества.
Подумав так, вы не ошибетесь. Парафин состоит из отдельных молекул, связанных друг с другом силами Ван-дер-Вааль-са (см. § 2.4). Кристалл алмаза можно рассматривать как одну гигантскую молекулу. Силы молекулярного притяжения значительно слабее химических сил, и соответственно парафин не идет ни в какое сравнение по твердости с алмазом.
Существует четыре типа кристаллов: молекулярные, ковалентные (или атомные), ионные и металлические.
Во всех типах кристаллов образующие их частицы (молекулы, атомы, ионы) располагаются таким образом, что их энергия оказывается минимальной. При таком расположении частиц внутри кристалла они образуют устойчивую систему.
Молекулярные кристаллы
К молекулярным кристаллам относятся кристаллы водорода, аргона, азота, брома, нафталина и др. Сухой лед (твердая углекислота) и многие органические вещества также являются молекулярными кристаллами. Прочность всех этих кристаллов невелика.
На рисунке 8.9 изображен молекулярный кристалл аргона. В отличие от изображений кристаллической решетки на рисунках 2.25 и 2.26, здесь атомы изображены не точками, а сферами. Кристалл имеет гранецентрированную кубическую структуру: в каждой элементарной ячейке атомы расположены в вершинах куба и в центрах его граней.
Рис. 8.9
Ковалентные кристаллы
К ковалентным кристаллам относятся алмаз, полупроводники кремний и германий, а также многие соединения: сульфид цинка, оксид бериллия и др.
В алмазе число ближайших соседей каждого атома углерода равно его валентности, т. е. четырем. Атом располагается симметрично в центре группы из четырех одинаковых атомов, которые лежат в вершинах тетраэдра (рис. 8.10). Тетраэдр — фигура жесткая; его конфигурацию не изменишь, не деформируя его ребер. Куб же, к примеру, легко деформировать в параллелепипед, не меняя размеров ребер. Этим, а также малыми межатомными расстояниями (0,154 нм) объясняются свойства алмаза, в частности его уникальная твердость.
Рис. 8.10
Любые два соседних атома налаживают между собой ковалентную (парноэлектронную) связь, выделяя для этого по одному электрону. Но не надо думать, что коллективизированная пара принадлежит лишь двум атомам. От атома к соседям ведут четыре «тропинки» (связи), и данный валентный электрон может двигаться по любой из них. Дойдя до соседнего атома, он может перейти к следующему и блуждать по тропинкам связям вдоль всего кристалла. Коллективизированные электроны принадлежат всему кристаллу в целом, и поэтому такой кристалл — это в сущности колоссальная молекула.
Ковалентные связи алмаза очень прочны и не рвутся с увеличением энергии колебаний атомов, т. е. с ростом температуры. Поэтому алмаз не проводит электрический ток. Участвующие в связи атомов валентные электроны привязаны к кристаллической решетке, и внешнее электрическое поле не оказывает заметного влияния на их движение. Кристаллы кремния и германия подобны кристаллу алмаза, но у них пар-ноэлектронные связи не столь прочны. Небольшое нагревание вызывает разрыв отдельных связей. Электроны покидают проторенные тропы и обретают свободу. Во внешнем электрическом поле они перемещаются между узлами решетки, образуя электрический ток. Подобного рода вещества называются полупроводниками. Подробно об этом будет рассказано в «Электродинамике».
Ионные кристаллы
Коллективизация валентных электронов связывает также атомы ионных кристаллов. К их числу относятся неорганические соединения NaCl, AgBr и др. Но в ионных кристаллах, например в кристалле поваренной соли, коллективизация электронов в сущности сводится к экспроприации хлором одного электрона у натрия. Все валентные электроны движутся по узлам решетки, занятым хлором, и кристалл фактически состоит из ионов противоположных знаков. Связь в этом случае обеспечивается электростатическими силами притяжения.
Металлические кристаллы
При образовании куска металла из отдельных атомов валентные электроны полностью утрачивают связь со своими атомами и становятся «собственностью» всего куска в целом. Положительные ионы окружены «электронным газом», образованным коллективизированными электронами. Этот газ заполняет все промежутки между ионами и стягивает их электрическими силами.
В ковалентных кристаллах коллективизированные электроны циркулируют по строго определенным путям. В металле же электроны оказываются свободными и могут перемещаться по всему куску в любых направлениях. Это проявляется, например, в том, что металлы хорошо проводят электрический ток, в то время как ковалентные кристаллы в большинстве случаев являются изоляторами или полупроводниками.
Очень слабая связь валентных электронов металла с атомами — вот причина той относительной свободы, которую имеют электроны внутри металлов. У ковалентных кристаллов эта связь значительно прочнее.
На рисунке 8.11 изображена элементарная ячейка кристалла натрия. Она имеет объемно-центрированную кубическую структуру: положительные ионы натрия располагаются в вершинах куба и в его центре.
Рис. 8.11
Итак, только в молекулярных кристаллах связь осуществляется силами Ван-дер-Ваальса. В остальных твердых телах в той или иной форме происходит коллективизация электронов.
Строение кристалла объясняет его свойства
Мы говорили, что кристалл ограничен плоскими гранями и прямыми ребрами. Этот факт можно объяснить тем, что плоскости и ребра кристалла всегда проходят через узлы пространственной решетки.
Можно понять, почему кристаллы одного и того же вещества могут существовать в нескольких модификациях (полиморфизм). Это объясняется разным строением пространственной решетки. На рисунках 8.10 и 8.12 изображены кристаллические решетки двух модификаций углерода: алмаза и графита. Представление о внутреннем строении кристалла позволяет легко объяснить наличие анизотропии его свойств.
Рассмотрим в качестве примера строение кристалла графита. Из рисунка 8.12 видно, что атомы углерода в кристалле графита располагаются в плоскостях, которые отстоят на определенных расстояниях друг от друга. Расстояния между атомами в плоскости в 2,5 раза меньше, чем расстояния между плоскостями. Поэтому атомы разных плоскостей связаны друг с другом слабее, чем атомы в одной плоскости. Отсюда следует, что разрушить кристалл так, чтобы плоскость разрыва была параллельна атомным плоскостям, легче, чем по какому-либо другому направлению. Действительно, кристаллы графита легко разрушаются (расслаиваются) благодаря тому, что атомы разных плоскостей скользят относительно друг друга. Когда мы пишем карандашом, такое расслоение происходит непрерывно и тонкие слои графита остаются на бумаге. Аналогично объясняется анизотропия других свойств.
Рис. 8.12
Существует четыре типа кристаллов: ковалентные, ионные, металлические и молекулярные. Тип кристалла определяется характером взаимодействия атомов и молекул, образующих кристалл.
|
|
|