Главная страница
Навигация по странице:

Учебник для углубленного изучения физики



Скачать 6.2 Mb.
Название Учебник для углубленного изучения физики
Анкор Учебник для углубленного изучения физики.doc
Дата 12.04.2017
Размер 6.2 Mb.
Формат файла doc
Имя файла Учебник для углубленного изучения физики.doc
Тип Учебник
#99
страница 65 из 73
1   ...   61   62   63   64   65   66   67   68   ...   73

§ 8.9. Изменение объема тела при плавлении и отвердевании. Тройная точка



Объем вещества при плавлении, как правило, увеличивается, а плотность уменьшается. При отвердевании, наоборот, объем уменьшается, а плотность увеличивается. Исключение составляют лед, чугун, висмут и немногие другие вещества.
Объяснение «странного» поведения льда и воды
Особенности в поведении льда при плавлении связаны с формой его кристаллической решетки. На рисунке 8.33 показана пространственная решетка кристаллов льда (наверху — вид сверху, внизу — вид сбоку). Шарики изображают атомы кислорода, положения атомов водорода не показаны. Из рисунка видно, что в кристалле льда молекулы расположены очень неравномерно. В одних местах (в пределах одного слоя) молекулы сближены, а в других местах (между слоями) имеются большие пустоты. При переходе от кристаллического состояния к жидкому расположение молекул меняется и делается более равномерным. Поэтому объем воды становится меньше объема льда. При этом расстояние между молекулами, которые в кристалле расположены близко друг к другу (молекулы одного слоя), увеличивается, а расстояние между отдаленными молекулами в разных слоях уменьшается. Потенциальная энергия первых увеличивается, а вторых — уменьшается, но увеличение потенциальной энергии близких молекул больше уменьшения потенциальной энергии отдаленных молекул. В результате получается, что внутренняя энергия воды оказывается больше внутренней энергии льда, из которого она образовалась, несмотря на уменьшение объема. Поэтому плавление льда требует затраты теплоты, как и плавление других тел.


Рис. 8.33
Вода и лед в природе
Увеличение объема воды при ее замерзании имеет огромное значение в природе. Вследствие меньшей плотности льда по сравнению с плотностью воды (при 0 °С плотность льда 900 кг/м3, а воды 1000 кг/м3) лед плавает на воде. Обладая плохой теплопроводностью, слой льда защищает воду, находящуюся под ним, от охлаждения и вымерзания. Поэтому рыбы и другие живые существа, находящиеся в воде, не гибнут во время морозов. Если бы лед тонул, то не очень глубокие водоемы промерзали бы за зиму насквозь.

При расширении замерзающей воды в закрытом сосуде возникают огромные силы, способные разорвать толстостенный чугунный шар. Подобный опыт легко осуществить с бутылкой, наполненной водой по горлышко и выставленной на мороз. На поверхности воды образуется ледяная пробка, закупоривающая бутылку, и при расширении замерзающей воды бутылка будет разорвана.

Замерзание воды в трещинах горных пород приводит к их разрушению.

Способность воды расширяться при отвердевании должна учитываться при прокладке труб водопровода и канализации, а также водяного отопления. Во избежание разрыва при замерзании воды подземные трубы должны укладываться на такой глубине, чтобы температура не опускалась ниже О °С. Наружные части труб должны на зимнее время покрываться теплоизолирующими материалами.
Зависимость температуры плавления от давления
Если плавление вещества сопровождается увеличением его объема, то при увеличении внешнего давления температура плавления вещества повышается. Это можно объяснить следующим образом. Сжатие вещества (при увеличении внешнего давления) препятствует увеличению расстояния между молекулами и, следовательно, возрастанию потенциальной энергии взаимодействия молекул, которое требуется для перехода в жидкое состояние. Поэтому приходится нагревать тело до большей температуры, пока потенциальная энергия молекул не достигнет необходимого значения.

Если плавление вещества сопровождается уменьшением его объема, то при увеличении внешнего давления температура плавления вещества понижается.

Так, например, лед при давлении 6 · 107 Па плавится при температуре -5 °С, а при давлении 2,2 · 108 Па температура плавления льда равна -22°С.

Понижение точки плавления льда при увеличении давления хорошо иллюстрируется опытом (рис. 8.34). Нейлоновая нить проходит сквозь лед, не разрушая его. Дело в том, что благодаря значительному давлению нити на лед он подтаивает под ней. Вода, вытекая из-под нити, тут же вновь замерзает.


Рис. 8.34
Тройная точка
Жидкость может находиться в равновесии со своим паром (насыщенным паром). На рисунке 6.5 (см. § 6.3) представлена зависимость давления насыщенного пара от температуры (кривая АВ), полученная экспериментально. Так как кипение жидкости происходит при давлении, равном давлению ее насыщенных паров, то эта же кривая дает зависимость температуры кипения от давления. Область, лежащая ниже кривой АВ, отвечает газовому состоянию, а выше — жидкому.

Кристаллические тела плавятся при определенной температуре, при которой твердая фаза находится в равновесии с жидкой. Температура плавления зависит от давления. Эту зависимость можно показать на том же рисунке, где изображена зависимость температуры кипения от давления.

На рисунке 8.35 кривая ТК характеризует зависимость температуры кипения от давления. Она заканчивается в точке К, соответствующей критической температуре, так как выше этой температуры жидкость не может существовать. Левее кривой ТК по экспериментальным точкам построена кривая ТС зависимости температуры плавления от давления (левее, так как твердой фазе соответствуют меньшие температуры, чем жидкой). Обе кривые пересекаются в точке Т.

Рис. 8.35
Что будет с веществом при температуре ниже температуры tтp, соответствующей точке T? Жидкая фаза при этой температуре уже существовать не может. Вещество будет либо в твердом, либо в газообразном состоянии. Кривая ОТ (см. рис. 8.35) соответствует равновесным состояниям твердое тело — газ, возникающим при сублимации твердых тел.

Три кривые КТ, ТС и ОТ делят фазовую плоскость на три области, в которых вещество может находиться в одной из трех фаз. Сами кривые описывают равновесные состояния жидкость — пар, жидкость — твердое тело и твердое тело — пар. Существует только одна точка Т, в которой все три фазы находятся в равновесии. Это и есть тройная точка.

Тройной точке отвечают единственные значения температуры и давления. Ее можно точно воспроизводить, и она служит одной из важнейших опорных точек при построении абсолютной шкалы температур. Для воды абсолютная температура тройной точки принята равной Ттр = 273,16 К, или tтp = 0,01°C.

На рисунке 8.35 изображена фазовая диаграмма воды, у которой температура плавления уменьшается с ростом давления. Для обычных веществ кривая ТС наклонена в противоположную сторону по отношению к вертикали, проходящей через точку Т.

Например, такой вид будет иметь фазовая диаграмма оксида углерода СО2. Температура тройной точки СО2 tтр= -56,6 °С, а давление ртр = 5,1 атм. Поэтому при обычном атмосферном давлении и температуре, близкой к комнатной, углекислота не может находиться в жидком состоянии. Твердая фаза СО2 называется обычно сухим льдом. Он имеет очень низкую температуру и не плавится, а сразу испаряется (сублимация).
Изменение объема при плавлении и отвердевании непосредственно связано с зависимостью температуры плавления от давления. У подавляющего большинства веществ температура плавления растет с давлением. У воды и некоторых других веществ она, напротив, понижается. Для обитателей Земли на высоких географических широтах это великое благо.

Существует единственная точка на диаграмме рТ (тройная точка), в которой все три фазы вещества находятся в равновесии.
В заключение отметим огромное значение физики твердого тела для развития техники и цивилизации вообще.

Человечество всегда использовало и будет использовать твердые тела. Но если раньше физика твердого тела не поспевала за развитием технологии, основанной на непосредственном опыте, то теперь положение изменилось. Теоретические исследования начинают приводить к созданию твердых тел, свойства которых совершенно необычны и получить которые методом «проб и ошибок» было бы невозможно. Изобретение транзисторов, о которых пойдет речь в дальнейшем, яркий пример того, как понимание структуры твердых тел привело к революции во всей радиотехнике.

Создание материалов с заданными механическими, магнитными и другими свойствами — одно из основных направлений физики твердого тела. Приблизительно половина физиков всего мира работает сейчас в области физики твердого тела.

1   ...   61   62   63   64   65   66   67   68   ...   73
написать администратору сайта