Главная страница
Навигация по странице:

Учебник для углубленного изучения физики



Скачать 6.2 Mb.
Название Учебник для углубленного изучения физики
Анкор Учебник для углубленного изучения физики.doc
Дата 12.04.2017
Размер 6.2 Mb.
Формат файла doc
Имя файла Учебник для углубленного изучения физики.doc
Тип Учебник
#99
страница 63 из 73
1   ...   59   60   61   62   63   64   65   66   ...   73

§ 8.6. Объяснение механических свойств твердых тел на основании молекулярно-кинетической теории



Механические свойства твердых тел и виды их деформаций: упругих и пластическихбыли достаточно подробно рассмотрены в «Механике», в § 2.4 было дано качественное объяснение справедливости закона Тука при малых деформациях. В дальнейшем после знакомства с законами электрических взаимодействий мы рассмотрим простейшую количественную теорию упругих деформаций ионных кристаллов. Теперь же познакомимся с объяснением пластических деформаций.
Механизм пластических деформаций
При упругих деформациях в кристаллических телах атомы лишь незначительно смещаются относительно друг друга. При пластических деформациях смещения атомов или молекул могут во много раз превышать расстояния между ними. Однако нарушения всей кристаллической структуры тела не происходит. Отдельные слои кристаллической решетки проскальзывают относительно друг друга. На рисунке 8.25 изображен тонкий кристалл меди после растяжения. Хорошо видны скольжения слоев.

Рис. 8.25
Важно, что у всех кристаллов скольжение атомных слоев происходит не сразу по всему объему кристалла, а осуществляется за счет передвижения дислокаций. Перемещение же дислокаций связано с перестройкой решетки, затрагивающей одновременно небольшую группу атомов вдоль одной линии. Из-за этого прочность кристалла оказывается в десятки раз меньше той, которая была бы в совершенном кристалле без дислокаций. В таком кристалле один атомный слой должен был бы смещаться относительно другого сразу по всему кристаллу.

Процесс перемещения дислокаций подобен перемещению складки по ковру (рис. 8.26). Складку перемещать легче, чем весь ковер, а в результате ковер в целом сдвигается на некоторое расстояние, и складка исчезает. Точно так же дислокация исчезает после того, как движущаяся линия дислокации достигает поверхности кристалла.

Рис. 8.26
Дислокации и прочность твердых тел
Пластические деформации, как мы выяснили, связаны с наличием дислокаций в кристаллах и возможностью их перемещений. Эти перемещения тормозятся различными препятствиями: атомами примесей, твердыми микроскопическими включениями, границами кристаллических зерен в поликристаллах, пересечениями с другими дислокациями. Если бы подобных торможений не было, то деформирующие силы быстро переместили бы все дислокации на поверхность кристалла, после чего кристалл стал бы исключительно прочным. На самом деле торможение дислокаций приводит к увеличению их числа в кристалле, к размножению дислокаций.

Наиболее прочными должны быть кристаллы, совершенно лишенные дислокаций. Но в реальных кристаллах они всегда имеются. Если число дислокаций невелико, то они практически перемещаются без пересечений, и прочность кристалла не очень велика. Упрочнение кристалла может быть достигнуто включением в него примесей или уменьшением размеров зерен в поликристаллах, а также увеличением числа дислокаций.

В технике широко используют повышение прочности металлов путем введения в них специальных добавок: никеля, вольфрама, ванадия и др.

Пластические деформации сами могут привести к увеличению количества дислокаций за счет их размножения при пересечениях. Этот способ повышения прочности называют наклепом. Наклеп осуществляют, протягивая металлические заготовки между валками или другими способами. Однако чрезмерное увеличение числа дислокаций делает кристаллическую решетку неустойчивой, и материал теряет прочность. В настоящее время знания о кристаллах и их дефектах достигли такого уровня, что можно точно предсказать, какова может быть прочность различных материалов. Разработаны принципы проектирования материалов с заданными свойствами. А это чрезвычайно важно для создания сверхзвуковых самолетов, космических ракет, дешевых и прочных автомобилей, тракторов и т. д. Появилась возможность повышения прочности материалов и тем самым уменьшения веса машин и механизмов, увеличения их надежности.
Пластические деформации вызываются перемещением дислокаций. Материал без дислокаций был бы исключительно прочен.

§ 8.7. Плавление и отвердевание



Много внимания было уделено взаимным превращениям жидкостей и газов. Теперь рассмотрим превращение твердых тел в жидкости и жидкостей в твердые тела.
Плавление кристаллических тел
Плавлением называется превращение вещества из твердого состояния в жидкое.

Между плавлением кристаллических и аморфных тел есть существенное различие. Чтобы кристаллическое тело начало плавиться, его необходимо нагреть до вполне определенной для каждого вещества температуры, называемой температурой плавления.

Например, при нормальном атмосферном давлении температура плавления льда равна О °С, нафталина — 80 °С, меди — 1083 °С, вольфрама — 3380 °С.

Чтобы тело расплавилось, недостаточно его нагреть до температуры плавления; необходимо продолжать подводить к нему теплоту, т. е. увеличивать его внутреннюю энергию. Во время плавления температура кристаллического тела не меняется.

Если тело продолжать нагревать и после того, как оно расплавилось, температура его расплава будет расти. Сказанное можно проиллюстрировать графиком зависимости температуры тела от времени его нагревания (рис. 8.27). Участок АВ соответствует нагреванию твердого тела, горизонтальный участок ВС — процессу плавления и участок CD— нагреванию расплава. Кривизна и наклон участков графика АВ и CDзависят от условий процесса (массы нагреваемого тела, мощности нагревателя и т. п.).

Рис. 8.27
Переход кристаллического тела из твердого состояния в жидкое происходит резко, скачком — либо жидкость, либо твердое тело.
Плавление аморфных тел
Совсем не так ведут себя аморфные тела. При нагревании они постепенно, по мере повышения температуры, размягчаются и в конце концов становятся жидкими, оставаясь в течение всего времени нагревания однородными. Никакой определенной температуры перехода из твердого состояния в жидкое нет. На рисунке 8.28 изображен график зависимости температуры от времени при переходе аморфного тела из твердого состояния в жидкое.



Рис. 8.28
Отвердевание кристаллических и аморфных тел
Переход вещества из жидкого состояния в твердое называется отвердеванием или кристаллизацией (для кристаллических тел).

Между отвердеванием кристаллических и аморфных тел тоже имеется существенное различие. При охлаждении расплавленного кристаллического тела (расплава) оно продолжает оставаться в жидком состоянии, пока температура его не снизится до определенного значения. При этой температуре, называемой температурой кристаллизации, тело начинает кристаллизоваться. Температура кристаллического тела во время отвердевания не изменяется. Многочисленные наблюдения показали, что кристаллические тела плавятся и отвердевают при одной и топ же определенной для каждого вещества температуре. При дальнейшем охлаждении тела, когда весь расплав отвердеет, температура тела снова будет уменьшаться. Сказанное иллюстрируется графиком зависимости температуры тела от времени его охлаждения (рис. 8.29). Участок А1В1соответствует охлаждению жидкости, горизонтальный участок В1С1— процессу кристаллизации и участок C1D1— охлаждению твердого тела, получившегося в результате кристаллизации.

Рис. 8.29
Вещества из жидкого состояния в твердое при кристаллизации переходят тоже резко без промежуточных состояний.

Затвердевание аморфного тела, например смолы, происходит постепенно и одинаково во всех своих частях; смола при этом остается однородной, т. е. затвердевание аморфных тел — это только постепенное загустевание их. Определенной температуры отвердевания нет. На рисунке 8.30 изображен график зависимости температуры застывающей смолы от времени.

Рис. 8.30
Таким образом, аморфные вещества не имеют определенной температуры, плавления и отвердевания.
Объяснение плавления и отвердевания на основании молекулярно-кинетической теории
Чтобы расплавить тело, мы его нагреваем. По мере нагревания кристаллического тела средняя энергия его молекул увеличивается за счет возрастания средней кинетической энергии. Увеличивается также потенциальная энергия молекул, так как увеличивается амплитуда колебаний молекул около положений равновесия, и увеличивается расстояние между молекулами, т. е. тела при нагревании расширяются.

После того как достигнута температура плавления, вся подводимая энергия идет на совершение работы по разрушению пространственной (кристаллической) решетки, т. е. на увеличение потенциальной энергии молекул. В процессе плавления кинетическая энергия молекул не изменяется, о чем свидетельствует постоянство температуры во время плавления. Во время затвердевания вещества его молекулы располагаются упорядоченно, образуя кристаллическую решетку. Их потенциальная энергия в процессе кристаллизации уменьшается, а кинетическая энергия остается неизменной. Поэтому при кристаллизации температура не изменяется и происходит отдача количества теплоты окружающим телам.

Когда при охлаждении отвердевает аморфное вещество, его частицы не располагаются в правильном порядке и не образуют кристаллические решетки. В твердом состоянии частицы аморфного тела расположены примерно в таком же беспорядке, как и в жидком. При отвердевании аморфных веществ происходит постепенное уменьшение кинетической энергии их частиц. Но нет скачкообразного уменьшения их потенциальной энергии. Точно так же при нагревании твердого аморфного тела постепенно растет кинетическая энергия его частиц, но нет скачкообразного возрастания их потенциальной энергии, как это наблюдается при плавлении кристаллических тел.

Кратко различие в поведении кристаллических и аморфных тел при плавлении можно объяснить следующим образом. В кристаллах связи между молекулами в разных местах разрушаются одновременно, так как они всюду одинаковы. Поэтому переход в жидкое состояние происходит при строго определенной температуре. В аморфных телах при некоторой температуре часть молекул приобретает способность к более или менее свободному перемещению, другая же еще нет. Ведь связи между молекулами неодинаковы из-за отсутствия строгого порядка в расположении молекул относительно друг друга. В результате переход из твердого состояния в жидкое оказывается растянутым на некоторый интервал температур.

В дальнейшем мы будем говорить только о плавлении и отвердевании (кристаллизации) кристаллических тел.
Переохлаждение жидкости
Жидкость может быть охлаждена ниже температуры кристаллизации. Это явление называется переохлаждением. Его можно наблюдать, например, при охлаждении расплавленного гипосульфита. Гипосульфит расплавляется в пробирке (его температура плавления 48 °С) и остается в ней в жидком состоянии при охлаждении даже до комнатной температуры. Однако если бросить в пробирку кристаллик гипосульфита или встряхнуть ее, то начнется быстрая кристаллизация.

В § 8.3 мы отмечали, что для начала кристаллизации необходимы так называемые центры кристаллизации. Если же центров кристаллизации нет, то может произойти переохлаждение жидкости на несколько градусов или даже десятков градусов. Переохлаждение чистой, без каких-либо пылинок и примесей воды нередко наблюдается в природе. Капельки тумана могут оставаться незамерзшими даже при сильных морозах. Такие капельки, осаждаясь на почве, образуют гололедицу. Также переохлажденными оказываются обычно капельки воды в облаках.

Переохлажденная жидкость находится в неустойчивом состоянии; с течением времени под влиянием тех или иных воздействий переохлажденная жидкость переходит в более устойчивое при данной температуре кристаллическое состояние.
Плавление и кристаллизация тел происходят при строго фиксированной температуре для заданного давления. Аморфные тела постепенно переходят из одного состояния в другое и не имеют определенной температуры плавления (отвердевания).

1   ...   59   60   61   62   63   64   65   66   ...   73
написать администратору сайта