Главная страница
Навигация по странице:

Вариант 16. Микроскопический метод диагностики инфекционных заболеваний. Сущность. Диагностическая ценность



Скачать 63.2 Kb.
Название Микроскопический метод диагностики инфекционных заболеваний. Сущность. Диагностическая ценность
Анкор Вариант 16.docx
Дата 25.04.2017
Размер 63.2 Kb.
Формат файла docx
Имя файла Вариант 16.docx
Тип Документы
#3466

Вариант 16


  1. Микроскопический метод диагностики инфекционных заболеваний. Сущность. Диагностическая ценность.

Инфекционные болезни на протяжении многих столетий были и остаются наиболее опасными болезнями человеческого организма из-за их способности вовлечь в процесс большое число здоровых людей в течение короткого периода времени.

1.1 Принципы диагностики инфекционных заболеваний

При постановке диагноза инфекционной болезни, как и при диагностике любых других заболеваний, основываются на жалобах больного, анамнезе болезни, эпидемиологическом анамнезе, результатах осмотра, данных лабораторных и инструментальных исследований.

Тем не менее, необходимо учитывать, что инфекционные заболевания имеют ряд особенностей, принципиально отличающих их от других заболеваний, это:

1-  Заразительность

2-  Специфичность

3-  Наличие инкубационного периода и циклическое развитие клинических симптомов

4-  Формирование специфического инфекционного иммунитета

Эти ориентиры могут оказать значимую помощь в дифференциальной диагностике инфекционных заболеваний от неинфекционных, правильно и своевременно сориентироваться во врачебной тактике.

После постановки предварительного диагноза определяется дальнейшая тактику обследования и проведения противоэпидемических мероприятий (изоляция больного, выявление лиц, с которыми общался больной, возможных источников возбудителя инфекции и механизма передачи возбудителя инфекции).

1.2 Лабораторная диагностика

Лабораторные исследования играют важную роль в установлении диагноза инфекционных болезней, назначении терапии, проведении контроля за эффективностью лечения. Процесс специфической лабораторной диагностики основан на выявлении возбудителя и ответной реакции организма человека в ходе инфекционного процесса. Он состоит из трех этапов: сбора материала, транспортировки и его исследования в лаборатории. К проведению каждого этапа предъявляют определенные требования, от соблюдения которых зависит эффективность лабораторной диагностики.

Лабораторные методы диагностики различны по чувствительности и специфичности. Чувствительность метода отражает вероятность того, что результат теста будет положительным у инфицированного пациента и определяется отношением общего числа положительных результатов к общему числу инфицированных пациентов. Чем выше чувствительность теста, тем меньше вероятность получения ложноотрицательных результатов.

1.3 Микробиологический метод

Микробиологический метод диагностики основан на обнаружении возбудителей в биологическом материале. Используют светооптическую и электронную микроскопию.

Микробиологический метод широко применяют в диагностике инфекционных болезней бактериальной, протозойной этиологии и, реже, вирусных болезней.

В практике работы бактериологической лаборатории микроскопическое исследование в большинстве случаев имеет значение ускоренной ориентировочной диагностики. Материалом для микроскопического исследования могут быть кровь, костный мозг, ликвор, пунктаты лимфатических узлов, фекалии, дуоденальное содержимое и желчь, моча, мокрота, отделяемое мочеполовых путей, биоптаты тканей, мазки со слизистой оболочки ротовой полости, небных миндалин, носа и др. Микроскопические методы исследования – это способы изучения очень мелких, неразличимых невооруженным глазом объектов с помощью микроскопов. Широко применяются в бактериологических, гистологических, цитологических и других исследованиях.
Микроскопические методы исследований включают в себя приготовление мазков и препаратов для микроскопирования. В большинстве случаев результаты микроскопических исследований носят ориентировочный характер (например, определяют отношение возбудителей к окраске), так как многие микроорганизмы лишены явных морфологических (т.е. структурных) внешних и внутренних особенностей. Тем не менее, микроскопией материала можно определить некоторые морфологические признаки возбудителей (например, наличие ядер, жгутиков, внутриклеточных включений и т.д.), а также установить сам факт наличия или отсутствия микроорганизмов в исследуемых образцах.
Существуют световая, фазово-контрастная, темнопольная (ультрамикроскопия), люминесцентная, поляризационная, ультрафиолетовая и электронная микроскопия.

1)Для обнаружения «кровепаразитов», например простейших (малярийные плазмодии, трипаносомы, лейшмании, бабезии) и гельминтов (микрофилярии), исследуют препараты «тонкий мазок» и/или «толстая капля» крови. Препараты крови окрашивают без предварительной фиксации по Романовскому—Гимзе.

2)Спинномозговую жидкость для микробиологического исследования отбирают в стерильную пробирку во время люмбальной пункции. Для приготовления препарата используют осадок, образующийся спонтанно или в результате центрифугирования.

3)Мазки со слизистой оболочки ротовой полости берут натощак или через 2 ч после еды стерильным ватным тампоном, мазок-отпечаток готовят на предметном стекле. Мазок из носоглотки берут стерильным заднеглоточным тампоном, вводя его осторожно через носовое отверстие в носоглотку. Для проведения анализов на дифтерию исследуют одновременно пленки и слизь из носа и глотки. Материал из носа и глотки берут разными тампонами.

4)Мочу для микроскопического исследования собирают в стерильную посуду после тщательного туалета наружных половых органов. Для приготовления препарата используют осадок мочи.

Микроскопическому исследованию подвергают нативные (нефиксированные, неокрашенные) и окрашенные препараты. В первом случае выявляют живые микроорганизмы в препарате «висячая капля» или «раздавленная капля», оценивая подвижность и морфологические свойства возбудителя. Например, темнопольную микроскопию нативных препаратов используют для диагностики спирохетозов (первичного сифилиса, лептоспироза, эпидемического (вшиного) возвратного тифа), кандидоза или других грибковых заболеваний. В этих случаях результат микроскопического исследования дает основание для постановки диагноза.

Наиболее широко применяют микроскопию микроорганизмов в окрашенном состоянии, в частности для диагностики паразитарных болезней (малярия, амебиаз, лямблиоз, лейшманиоз, гельминтозы). Для окраски препаратов используют ориентировочные, специальные и дифференцирующие методы. Ориентировочная окраска позволяет оценить общую морфологию микроорганизма. С этой целью применяют стандартные красители — фуксин или метиленовый синий.

Среди специальных методов наиболее часто используют окраску по Граму. Этот метод выявляет способность бактерий удерживать краситель кристаллический фиолетовый (или генциановый фиолетовый) либо обесцвечиваться в спирте. Грамположительные бактерии окрашиваются в фиолетовый цвет, а грамотрицательные — в красный, так как они обесцвечиваются в спирте и их дополнительно окрашивают фуксином. Окраска возбудителей по Граму позволяет определить первичный выбор средств антибактериальной терапии.

К специальным методам относят окраску по Цилю— Нильсену, выявляющую кислото- и спиртоустойчивые палочки, в частности микобактерии туберкулеза, которые окрашиваются в красный цвет, а остальные микроорганизмы — в синий.

Дифференцирующими называют методы окраски отдельных элементов бактериальной клетки. Например, окраска метахроматиновых (волютиновых) включений в бактериях (по Нейссеру, Майеру), окраска капсул (по Гиссу, Лейфсону, Антони), спор, жгутиков (по Леффлеру, Бейли, Грею и др.), клеточной стенки, хроматиновых (ядерных) элементов (по Романовскому—Гимзе и Пекарскому).

К микроскопическим методам исследования относят иммунофлюоресценцию (люминесцентная микроскопия), используемую для диагностики бактериальных и вирусных инфекций и основанную на применении антител, меченных флюоресцирующим красителем.

Эффективность микроскопического метода определяется его чувствительностью и специфичностью. Специфичность ограничивается возможной ошибочной идентификацией возбудителя из-за артефактов. Кроме того, при проведении микроскопического исследования имеют значение техника исследования; например, при диагностике малярии чувствительность исследования крови методом «толстой капли» в 20—40 раз выше, чем при исследовании методом тонкого мазка, поскольку данный препарат позволяет просматривать больший объем крови, а кроме того, плазмодии в препарате располагаются внеклеточно, что облегчает их обнаружение и количественную оценку.

Тем не менее чувствительность метода «толстой капли», проводимого по стандартам ВОЗ (исследование минимум 100 полей зрения в течение минимум 5 мин), все же не превышает 95 % из-за неравномерности распределения малярийных плазмодиев крови, особенно при низком уровне паразитемии.

Важным способом повышения чувствительности микробиологического метода является использование различных способов концентрации патогенов, например осаждение или флотация пробы при исследовании кала и фильтрация через миллипоровые фильтры проб крови, мочи, спинномозговой жидкости.

Повышению эффективности микроскопического исследования способствует количественное определение выявленного паразита в поле зрения или единице объема исследуемого материала. В частности, при малярии (особенно при обнаружении P.falciparum) важно определение интенсивности паразитемии.

Количественная оценка микрофлоры в мазке, а также выявление микробных ассоциаций важны в случае необходимости определения этиологической роли условно-патогенных микроорганизмов. Известно, что максимальная определяемая концентрация бактерий в мазке из нативного материала составляет 1Сг клеток в 1 мл.

Для большинства видов исследуемого материала этиологически значимым считается обнаружение условно-патогенных бактерий определенного вида в концентрации не менее 105—106 клеток в 1 мл, поэтому чувствительность микроскопического метода в большинстве случаев удовлетворяет потребностям клинической микробиологии.

  1. Понятие о микробиоценозе. Дисбактериоз: причины формирования.

2.1 Микробиоценоз

Нормальная микрофлора сопутствует своему хозяину на протяжении всей его жизни. О существенном ее значении в поддержании жизнедеятельности организма свидетельствуют наблюдения за животными- гнотобионтами (лишенными собственной микрофлоры), жизнь которых существенно отличается от таковой нормальных особей, а порою просто невозможна. В этой связи учение о нормальной микрофлоре человека и ее нарушениях представляет собой весьма существенный раздел медицинской микробиологии.
    В настоящее время твердо установленным является положение о том, что организм человека и населяющие его микроорганизмы – это единая экосистема. С современных позиций нормальную микрофлору следует рассматривать как совокупность множества микробиоценозов, характеризующихся определенным видовым составом и занимающих тот или иной биотип в организме. В любом микробиоценозе следует различать постоянно встречающиеся виды микроорганизмов – характерные (индигенная, автохтонная флора), добавочные и случайные – транзиторные (аллохтонная флора). Количество характерных видов относительно невелико, но численно они всегда представлены наиболее обильно. Видовой состав транзиторных микроорганизмов разнообразен, но они немногочисленны.
    Поверхности кожи и слизистых оболочек тела человека обильно заселены бактериями. При этом количество бактерий, населяющих покровные ткани (кожу, слизистые оболочки), во много раз превосходит число собственных клеток хозяина. Количественные колебания бактерий в биоценозе могут достигать для некоторых бактерий нескольких порядков и, тем не менее, укладываются в принятые нормативы. Сформировавшийся микробиоценоз существует как единое целое, как сообщество объединенных пищевыми цепями и связанных микроэкологией видов.
    Совокупность микробных биоценозов, встречающихся в организме здоровых людей, составляет нормальную микрофлору человека. В настоящее время нормальную микрофлору рассматривают как самостоятельный экстракорпоральный орган. Он имеет характерное анатомическое строение -- биопленка, толщина которой колеблется от 0,1 до 0,5 мм. Биопленка представляет собой полисахаридный каркас, состоящий из микробных полисахаридов и муцина, который продуцирует клетки макроорганизма. В этом каркасе иммобилизованы микроколонии бактерий – представителей нормальной микрофлоры, которые могут располагаться в несколько слоев. В состав нормальной микрофлоры входят как анаэробные, так и аэробные бактерии, соотношение которых в большинстве биоценозов составляет 10:1—100:1.

2.2 Дисбактериоз: причины формирования

  • Дисбиоз (дисбактериоз) – качественное и количественное изменение состава нормальной микрофлоры макроорганизма.
        Вследствие общего характера нарушений обменных процессов при дисбактериозе он играет определенную роль в развитии:
        • онкологических заболеваний,
        • гипертонической болезни,
        • мочекаменной болезни,
        • атеросклероза,
        • нарушений свертываемости крови.
        В то же время дисбактериоз может быть ярко выражен клинически в виде нарушений деятельности дыхательной системы (бронхиты и бронхиолиты, хронические заболевания легких) и желудочно-кишечных тракта (диарея, неспецифический колит, синдром малой сорбции), хотя может протекать и без выраженных клинических проявлений.
        Диагноз дисбактериоза устанавливается повторным (с интервалом в 5–7 дней) бактериологическим исследованием материала, взятого из того или иного биотопа. При этом количественная оценка результатов определения видов и вариантов, обнаруживаемых микроорганизмов, входящих в состав обследуемого биоценоза, является обязательной.
        Наличие дисбиоза определяется изменениями состава нормальной микрофлоры, а его выраженность – степенью этих изменений.
        Показателями дисбактериоза являются следующие положения:
        • снижение общего количества бактерий, представителей нормальной микрофлоры или их отдельных представителей;
        • увеличение числа редко встречающихся в норме микроорганизмов или появление не свойственных данному биотопу видов;
        • появление измененных вариантов микроорганизмов – представителей нормальной микрофлоры (изменение биохимических свойств штаммов этих микроорганизмов и/или приобретение ими некоторых факторов вирулентности);
        • ослабление антагонистической активности микроорганизмов, входящих в состав нормальной микрофлоры.
        Дисбаланс нормальной микрофлоры может проявляться под действием ряда причин:
        • нерациональная антибиотикотерапия;
        • действие токсических веществ (интоксикации), в том числе производственных;
        • инфекционные заболевания (сальмонеллез, дизентерия);
        • соматические заболевания (сахарный диабет, онкологические заболевания);
        • гормонотерапия (например, лечение прогестероном, кортикостероидами нередко сопровождается развитием кандидоза женских гениталий или ротовой полости);
        • радиационные поражения, в том числе лучевая терапия;
        • иммунодефицитные и витаминодефицитные состояния.


3 Антитела. Классы иммуноглобулинов, их функции.

3.1 Антитела

Антитела - иммуноглобулины, продуцируемые В-лимфоцитами (плазматическими клетками). Мономеры иммуноглобулинов состоят из двух тяжелых (Н-цепи) и двух легких (L-цепи) полипептидных цепей, связанных дисульфидной связью. Эти цепи имеют константные (С) и вариабельные (V) участки. Папаин расщепляет молекулу иммуноглобулина на два одинаковых антигенсвязывающих фрагмента - Fab (Fragment anligen binding) и Fc (Fragmenl crislalhzable). По типу тяжелой цепи различают 5 классов иммуноглобулинов IgG, IgM, IgA, IgD, IgE.

Они состоят из полипептидных цепей. В молекуле иммуноглобулина различают четыре структуры:

1) первичную – это последовательность определенных аминокислот. Она строится из нуклеотидных триплетов, генетически детерминируется и определяет основные последующие структурные особенности;

2) вторичную (определяется конформацией полипептидных цепей);

3) третичную (определяет характер расположения отдельных участков цепи, создающих пространственную картину);

4) четвертичную. Из четырех полипептидных цепей возникает биологически активный комплекс. Цепи попарно имеют одинаковую структуру.

Большинство молекул иммуноглобулинов составлено из двух тяжелых (H) цепей и двух легких (L) цепей, соединенных дисульфидными связями. Легкие цепи состоят или из двух k-цепей, или из двух l-цепей. Тяжелые цепи могут быть одного из пяти классов (IgA, IgG, IgM, IgD и IgE).

Каждая цепь имеет два участка:

1) постоянный. Остается постоянным в последовательности аминокислот и антигенности в пределах данного класса иммуноглобулинов;

2) вариабельный. Характеризуется большой непостоянностью последовательности аминокислот; в этой части цепи происходит реакция соединения с антигеном.

Каждая молекула IgG состоит из двух соединенных цепей, концы которых формируют два антигенсвязывающих участка. На вариабельном участке каждой цепи имеются гипервариабельные участки: три в легких цепях и четыре в тяжелых. Разновидности последовательности аминокислот в этих гипервариабельных участках определяют специфичность антитела. При определенных условиях эти гипервариабельные области могут также выступать в роли антигенов (идиотипов).

В молекуле иммуноглобулина меньше двух антигенсвязывающих центров быть не может, но один может быть завернут внутрь молекулы – это неполное антитело. Оно блокирует антиген, и тот не может связаться с полными антителами.

При энзиматическом расщеплении иммуноглобулинов образуются следующие фрагменты:

1) Fc-фрагмент содержит участки обеих постоянных частей; не обладает свойством антитела, но имеет сродство с комплементом;

2) Fab-фрагмент содержит легкую и часть тяжелой цепи с одним антигенсвязывающим участком; обладает свойством антитела;

3) F(ab)Т2-фрагмент состоит из двух связанных между собой Fab-фрагментов.

Другие классы иммуноглобулинов имеют такую же основную структуру. Исключение – IgM: является пентамером (состоит из пяти основных единиц, связанных в области Fc-концов), а IgA – димер.
i_glob.gif
3.2 Классы иммуноглобулинов, их функции

Существует пять классов иммуноглобулинов у человека.

1. Иммуноглобулины G – это мономеры, включающие в себя четыре субкласса (IgG1; IgG2; IgG3; IgG4), которые отличаются друг от друга по аминокислотному составу и антигенным свойствам. Антитела субклассов IgG1 и IgG4 специфически связываются через Fc-фрагменты с возбудителем (иммунное опсонирование), а благодаря Fc-фрагментам взаимодействуют с Fc-рецепторами фагоцитов, способствуя фагоцитозу возбудителя. IgG4 участвует в аллергических реакциях и неспособен фиксировать комплемент.

Свойства иммуноглобулинов G:

1) играют основополагающую роль в гуморальном иммунитете при инфекционных заболеваниях;

2) проникают через плаценту и формируют антиинфекционный иммунитет у новорожденных;

3) способны нейтрализовать бактериальные экзотоксины, связывать комплемент, участвовать в реакции преципитации.

2. Иммуноглобулины М включают в себя два субкласса: IgM1 и IgM2.

Свойства иммуноглобулинов М:

1) не проникают через плаценту;

2) появляются у плода и участвуют в антиинфекционной защите;

3) способны агглютинировать бактерии, нейтрализовать вирусы, активировать комплемент;

4) играют важную роль в элиминации возбудителя из кровеносного русла, активации фагоцитоза;

5) образуются на ранних сроках инфекционного процесса;

6) отличаются высокой активностью в реакциях агглютинации, лизиса и связывания эндотоксинов грамотрицательных бактерий.

3. Иммуноглобулины А – это секреторные иммуноглобулины, включающие в себя два субкласса: IgA1 и IgA2. В состав IgA входит секреторный компонент, состоящий из нескольких полипептидов, который повышает устойчивость IgA к действию ферментов.

Свойства иммуноглобулинов А:

1) содержатся в молоке, молозиве, слюне, слезном, бронхиальном и желудочно-кишечном секрете, желчи, моче;

2) участвуют в местном иммунитете;

3) препятствуют прикреплению бактерий к слизистой;

4) нейтрализуют энтеротоксин, активируют фагоцитоз и комплемент.

4. Иммуноглобулины Е – это мономеры, содержание которых в сыворотке крови ничтожно мало. К этому классу относится основная масса аллергических антител – реагинов. Уровень IgE значительно повышается у людей, страдающих аллергией и зараженных гельминтами. IgE связывается с Fc-рецепторами тучных клеток и базофилов.

Свойства иммуноглобулинов Е: при контакте с аллергеном образуются мостики, что сопровождается выделением БАВ, вызывающих аллергические реакции немедленного типа.

5. Иммуноглобулины D – это мономеры. Функционируют в основном в качестве мембранных рецепторов для антигена. Плазматические клетки, секретирующие IgD, локализуются преимущественно в миндалинах и аденоидной ткани.

Свойства иммуноглобулинов D:

1) участвуют в развитии местного иммунитета;

2) обладают антивирусной активностью;

3) активируют комплемент (в редких случаях);

4) участвуют в дифференцировке В-клеток, способствуют развитию антиидиотипического ответа;

5) участвуют в аутоиммунных процессах.


  • Холера. Этиология. Эпидемиология. Лабораторная диагностика. Специфическая профилактика.

3.1 Холера

Холе́ра (от др.-греч. χολή «желчь» и ῥέω «теку») — острая кишечная сапрозоонозная инфекция, вызываемая бактериями вида Vibrio cholerae. Характеризуется фекально-оральным механизмом заражения, поражением тонкого кишечника, водянистой диареей, рвотой, быстрой потерей организмом жидкости и электролитов с развитием различной степени обезвоживания вплоть до гиповолемического шока и смерти.

3.2 Этиология

Возбудитель Vibrio cholerae имеет более сотни серогрупп. Он был открыт Кохом в 19 веке, имеет вид запятой. Холерные вибрионы могут выживать на поверхности пищевых продуктов и в приготовленной пище до 5 суток, могут сохраняться в воде, выдерживают 1 минуту в кипятке.

Инфекция является антропонозной и носит эпидемический характер. Особое значение в эпидемиологии заболевания носят здоровые носители, то есть заражённые холерным вибрионом люди без клинических симптомов заболевания и способные заражать других людей. Наибольшую опасность в плане инфицирования холерой представляет питьё необеззараженной воды, употребление в пищу заражённых продуктов, в том числе не проходящих термическую обработку. Возможен также и контактно-бытовой путь передачи. Эпидемическую опасность представляют собой стоячие водоёмы с тёплой водой, в которые стекают канализационные отходы, так как в них создаются благоприятные условия для размножения возбудителей холеры.

3.3 Эпидемиология

По оценке Всемирной организации здравоохранения в 2010 году в мире было от 3 до 5 миллионов случаев заболевания холерой и 100—130 тысяч смертельных случаев. Эти заболевания происходили главным образом в развивающихся странах. В начале 1980-х уровень смертности оценивается как превышающий 3 миллиона в год. Точное количество случаев заболевания оценить трудно, поскольку о многих из них не сообщается из-за опасений, что вспышки холеры могут оказать негативный эффект на приток туристов в этих странах. В настоящее время холера продолжает носить эпидемический и эндемичный характер во многих регионах мира.

Все способы передачи холеры являются вариантами фекально-орального механизма. Источником инфекции является человек — больной холерой и здоровый (транзиторный) вибриононоситель, выделяющие в окружающую среду Vibrio cholerae с фекалиями и рвотными массами.

Большое значение для распространения заболевания играют здоровые вибриононосители. Соотношение носители/больные может достигать 4:1 при варианте Vibrio cholerae O1 и 10:1 при non-O1 Vibrio cholerae (НАГ-вибрионы).

Заражение происходит главным образом при питье необеззараженной воды, заглатывании воды при купании в загрязнённых водоёмах, во время умывания, а также при мытье посуды заражённой водой. Заражение может происходить при употреблении пищи, инфицированной во время кулинарной обработки, её хранения, мытья или раздачи, особенно продуктами, не подвергающимися термической обработке (моллюски, креветки, вяленая и слабосоленая рыба). Возможен контактно-бытовой (через загрязнённые руки) путь передачи. Кроме того, холерные вибрионы могут переноситься мухами.

При распространении заболевания важную роль играют плохие санитарно-гигиенические условия, скученность населения, большая миграция населения. Здесь надо отметить эндемичные и завозные очаги холеры. В эндемичных районах (Юго-Восточная Азия, Африка, Латинская Америка) холера регистрируется в течение всего года. Завозные эпидемии связаны с интенсивной миграцией населения. В эндемичных районах чаще болеют дети, так как взрослое население уже обладает естественно приобретённым иммунитетом. В большинстве случаев подъем заболеваемости наблюдают в тёплый сезон.

Примерно у 4—5 % выздоровевших больных формируется хроническое носительство вибриона в желчном пузыре. Это особенно характерно для лиц пожилого возраста. После перенесённой болезни, в организме переболевших вырабатывается иммунитет, что не исключает заражение другими серотипами Vibrio cholerae.

    1. Лабораторная диагностика

Цель диагонстики: индикация Vibrio cholerae в испражнениях и/или рвотных массах, воде, определение агглютининов и вибриоцидных антител в парных сыворотках крови больных

Посев бактериологического материала (испражнения, рвотные массы, вода) на тиосульфат-цитрат-жёлчносолевой-сахарозный агар (английское
значение TCBS), а также на 1 % щелочную пептонную воду; последущий пересев на вторую пептонную воду и высев на чашки со щелочным агаром.

Выделение чистой культуры, идентификация.

Реакция агглютинации со специфическими сыворотками.

3.5 Специфическая профилактика холеры

  • пить только кипяченую воду;

  • газированные напитки, упакованные в бутылки или банки, обычно безопасны, но только если не добавлять лёд;

  • употреблять в пищу только свежеприготовленные и хорошо термически обработанные продукты (то, что хорошо проварено, прожарено, пропечено и т.д.) ;

  • всегда очищать фрукты и овощи ;

  • не есть ничего, что выглядит подозрительным, сырым и недостаточно обработанным, включая морепродукты;

  • соблюдение санитарно- гигиенических норм, которые включают обеззараживание мест общего пользования и мытьё рук;

  • специфическая профилактика холерной вакциной и холероген-анатоксином. Холерная вакцина имеет короткий 3-6 мес. период действия.

Если следовать этим мерам предосторожности, риск заражения холерой очень мал. Однако на всякий случай рекомендуется взять с собой лекарственные средства, позволяющие приготовить раствор для восстановления количества жидкости в организме (для проведения пероральной регидратации). Существует вакцина для профилактики холеры. Однако иммунитет от вакцины является временным и недостаточно прочным. Поэтому, даже если вы сделали прививку, необходимо постоянно следовать правилам гигиены, т.к. вакцина не обеспечит полной защиты от холеры.

В настоящее время имеются следующие пероральные противохолерные вакцины:

Вакцина WC/rBS — состоит из убитых целых клеток V. Cholerae О1 с очищенной рекомбинантной В-субъединицей холерного анатоксина (WC/rBS) — предоставляет 85-90-процентную защиту во всех возрастных группах в течение шести месяцев после приема двух доз с недельным перерывом.

Модифицированная вакцина WC/rBS — не содержит рекомбинантной В-субъединицы. Необходимо принимать две дозы этой вакцины с недельным перерывом. Вакцина лицензирована только во Вьетнаме.

Вакцина CVD 103-HgR — состоит из аттенуированных живых оральных генетически модифицированных штаммов V. Cholerae О1 (CVD 103-HgR). Однократная доза вакцины предоставляет защиту от V. Cholerae на высоком уровне (95 %). Через три месяца после приема вакцины защита от V. Cholerae El Tor была на уровне 65 %.

Библиографический список

  1. Гусев М. В., Минеева Л. А. Микробиология. М.: Медицина, 2003.

  2. Елинов Н. П. Химическая микробиология. М.: Медицина, 1989.

  3. Подколзина В. А., Седов А. А. Медицинская микробиология. Конспект лекций. М.: Приор, 2005.

  4. Шуб Г. М. Основы медицинской бактериологии, вирусологии и иммунологии. Учебное пособие. Саратов, 2001.

  5. Шувалова Е. П. Инфекционные болезни. М.: Медицина, 2005

  6. Методические рекомендации ВОЗ

  7. Адамов А. К. и др. Холера в СССР в период VII пандемии / Авторы: А. К. Адамов, Ю. М. Ломов, В. В. Малеев, А. С. Марамович, Г. М. Мединский, М. И. Наркевич, Л. С. Подосинникова, В. И. Покровский, В. С. Уралёва; Под ред. В. И. Покровского. — М.: Медицина, 2000. — 472 с. — 1000 экз. — ISBN 5-225-04537-5. (в пер.)

  8. Мединский Г.М., Наркевич М.И., Сергиев В.П., Адамов А.К. Эпидемиологический надзор за холерой в СССР. — М.: Медицина, 1989. — 144 с.

  9. СП 3.1.1.2521-09 Профилактика холеры. Общие требования к эпидемиологическому надзору за холерой на территории Российской Федерации

  10. Микробиологические исследования: методы, взятие биоматериала / [Электронный ресурс] / © 2009-2013 Медицинский центр «Клиника доктора Александрова» URL: http://www.raemed.ru/diagnostika/laboratornaya-diagnostika/mikrobiologic... (Дата обращения: 21.09.2014)

  11. Краткая медицинская энциклопедия. Микроскопические методы исследования / [Электронный ресурс] / Copyright © 2002-2011 «Библиотека природы» URL: http://www.golkom.ru/kme/13/2-172-3-1.html (Дата обращения: 21.09.2014)

  12. Meduniver Микробиология / [Электронный ресурс] / Meduniver.com URL: http://meduniver.com/Medical/Microbiology/328.html (Дата обращения: 21.09.2014)
    4. Meduniver Микробиология / [Электронный ресурс] / Meduniver.com URL: http://meduniver.com/Medical/Microbiology/329.html (Дата обращения: 21.09.2014)

  13. Шилов. В. М., Залогуев С.Н., Брагина М.П. и др. Характер изменений нормальной микрофлоры человека при длительной гипокинезии. «Проблемы клинической микробиологии в неинфекционной клинике». Тез. Докл. 1983 г. Винница–Москва. – С.183.
    10. Грачева Н.М., Ющук Н.Д., Чупринина Р.П., Мацулевич Т.В., Пожалостина Л.В. Дисбактериозы кишечника, причины возникновения, диагностика, применение бактерийных биологических препаратов. Пособие для врачей и студентов. М., 1999. 44 с.
написать администратору сайта