Главная страница
Культура
Искусство
Языки
Языкознание
Вычислительная техника
Информатика
Финансы
Экономика
Биология
Сельское хозяйство
Психология
Ветеринария
Медицина
Юриспруденция
Право
Физика
История
Экология
Промышленность
Энергетика
Этика
Связь
Автоматика
Математика
Электротехника
Философия
Религия
Логика
Химия
Социология
Политология
Геология

Лекция4-2011. Лекция 4 по дисциплине Электрические машины для студентов специальности 160903 тема 3



Скачать 2.23 Mb.
Название Лекция 4 по дисциплине Электрические машины для студентов специальности 160903 тема 3
Анкор Лекция4-2011.doc
Дата 25.04.2017
Размер 2.23 Mb.
Формат файла doc
Имя файла Лекция4-2011.doc
Тип Лекция
#3063
страница 1 из 3
  1   2   3


МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ГРАЖДАНСКОЙ АВИАЦИИ
ИРКУТСКИЙ ФИЛИАЛ

КАФЕДРА АВИАЦИОННЫХ ЭЛЕКТРОСИСТЕМ

И ПИЛОТАЖНО-НАВИГАЦИОННЫХ КОМПЛЕКСОВ

ЛЕКЦИЯ №4

по дисциплине
Электрические машины
для студентов специальности 160903


ТЕМА №3
Принцип действия, конструкция, магнитное поле машины постоянного тока при холостом ходе и при нагрузке, коммутация машин постоянного тока

Иркутск, 2011 г.



Иркутский филиал МГТУ ГА
Кафедра Авиационных электросистем и пилотажно-

навигационных комплексов


Лекция №4
По дисциплине: Электрические машины
Тема лекции: Принцип действия, конструкция, магнитное поле машины постоянного тока при холостом ходе и при нагрузке, коммутация машин постоянного тока (2 часа)

СОДЕРЖАНИЕ


  1. Магнитное поле машины постоянного тока при нагрузке.

  2. Коммутация машин постоянного тока.


ЛИТЕРАТУРА

  1. Копылов Б.В. Электрические машины. М., 1988 г.



НАГЛЯДНЫЕ ПОСОБИЯ, ПРИЛОЖЕНИЯ, ТСО

  1. Мультимедийная установка


1. Магнитное поле машины постоянного тока при нагрузке
При работе машины в режиме х.х. ток в обмотке якоря практически отсутствует, а поэтому в машине действует лишь МДС обмотки возбуждения FB0. Магнитное поле машины в этом случае симметрично относительно оси полюсов (рис. 26.4, а). График распределения магнитной индукции в воздушном зазоре представляет собой кривую, близкую к трапеции.

Если же машину нагрузить, то в обмотке якоря появится ток, который создаст в магнитной системе машины МДС якоря Fa. Допустим, что МДС возбуждения равна нулю и в машине действует лишь МДС якоря. Тогда магнитное поле, созданное этой МДС, будет иметь вид, представленный на рис. 26.4, б. Из этого рисунка видно, что МДС обмотки якоря направлена по линии щеток (в данном случае по геометрической нейтрали). Несмотря на то, что якорь вращается, пространственное положение МДС обмотки якоря остается неизменным, так как направление этой МДС определяется положением щеток.

Наибольшее значение МДС якоря - на линии щеток (рис. 26.4, б, кривая 1), а по оси полюсов эта МДС равна нулю. Однако распределение магнитной индукции в зазоре от потока якоря совпадает с графиком МДС лишь в пределах полюсных наконечников. В межполюсном пространстве магнитная индукция резко ослабляется (рис. 26.4, б, кривая 2). Объясняется это увеличением магнитного сопротивления потоку якоря в межполюсном пространстве. МДС обмотки якоря на пару полюсов пропорциональна числу проводников в обмотке N и току якоря Iа:

(26.6)

Введем понятие линейной нагрузки (А/м), представляющей собой суммарный ток якоря, приходящийся на единицу длины его окружности по наружному диаметру якоря Da:

(26.7)

где ia=Ia/(2a) - ток одного проводника обмотки, А.

Значение линейной нагрузки для машин постоянного тока общего назначения в зависимости от их мощности может быть (100-500)102 А/м. Воспользовавшись линейной нагрузкой, запишем выражение для МДС якоря: Fa = . Таким образом, в нагруженной машине постоянного тока действуют две МДС: возбуждения FВ0 и якоря Fa.
Влияние МДС обмотки якоря на магнитное поле машины называют реакцией якоря. Реакция якоря искажает магнитное поле машины, делает его несимметричным относительно оси полюсов.


Рис. 26.4. Магнитное поле машины и распределение магнитной индукции

в воздушном зазоре
На рис. 26.4, в показано распределение магнитных силовых линий результирующего поля машины, работающей в генераторном режиме при вращении якоря по часовой стрелке. Такое же распределение магнитных линий соответствует работе машины режиме двигателя, но при вращении якоря против часовой стрелки. Если принять, что магнитная система машины не насыщена, то реакция якоря будет лишь искажать результирующий магнитный поток, не изменяя его значения: край полюса и находящийся под ним зубцовый слой якоря, где МДС якоря совпадает по направлению с МДС возбуждения, подмагничиваются. Другой край полюса и зубцовый слой якоря, где МДС направлена против МДС возбуждения, размагничиваются. При этом результирующий магнитный поток как бы поворачивается относительно оси главных полюсов на некоторый угол, а физическая нейтраль mm' (линия, проходящая через точки на якоре, в которых индукция равна нулю) смещается относительно геометрической нейтрали nn' на угол α. Чем больше нагрузка машины, тем сильнее искажение результирующего поля, а следовательно, тем больше угол смещения физической нейтрали.

При работе машины в режиме генератора физическая нейтраль смещается по направлению вращения якоря, а при работе двигателем - против вращения якоря.

Искажение результирующего поля машины неблагоприятно отражается на ее рабочих свойствах. Во-первых, сдвиг физической нейтрали относительно геометрической приводит к более тяжелым условиям работы щеточного контакта и может послужить причиной усиления искрения на коллекторе. Во-вторых, искажение результирующего поля машины влечет за собой перераспределение магнитной индукции в воздушном зазоре машины. На рис. 26.4, в показан график распределения результирующего поля в зазоре, полученный совмещением кривых, изображенных на рис. 26.4, а, б. Из этого графика следует, что магнитная индукция в зазоре машины распределяется несимметрично относительно оси полюсов, резко увеличиваясь под подмагниченными краями полюсов. Это приводит к тому, что мгновенные значения ЭДС секций обмотки якоря в моменты попадания их пазовых сторон в зоны максимальных значений магнитной индукции (под подмагниченные края полюсных наконечников) резко повышаются. В результате возрастает напряжение между смежными коллекторными пластинами UK. При значительных нагрузках машины напряжение UK может превзойти допустимые пределы и миканитовая прокладка между смежными пластинами будет перекрыта электрической дугой. Имеющиеся на коллекторе частицы графита будут способствовать развитию электрической дуги, что приведет к возникновению мощной электрической дуги, перекрывающей весь коллектор или значительную его часть, - явления чрезвычайно опасного.


Рис. 26.5. Разложение МДС обмотки якоря на продольную и поперечную составляющие
Таковы последствия влияния реакции якоря на машину с ненасыщенной магнитной системой. Если же магнитная система машины насыщена, что имеет место у большинства электрических машин, то подмагничивание одного края полюсного наконечника и находящегося под ним зубцового слоя якоря происходит в меньшей степени, чем размагничивание другого края и находящегося под ним зубцового слоя якоря. Это благоприятно сказывается на распределении магнитной индукции в зазоре, которое становится более равномерным, так как максимальное значение индукции под подмагничиваемым краем полюсного наконечника уменьшается на величину, определяемую высотой участка 1 на рис. 26.4, в. Однако результирующий магнитный поток машины при этом уменьшается. Таким образом, реакция якоря в машине с насыщенной магнитной системой размагничивает машину (так же как и у синхронной машины при активной нагрузке). В результате ухудшаются рабочие свойства машины: у генераторов снижается ЭДС, у двигателей уменьшается вращающий момент.

Влияние реакции якоря на работу машины усиливается при смещении щеток с геометрической нейтрали. Объясняется это тем, что вместе со щетками смещается и вектор МДС якоря (рис. 26.5, а). При этом МДС якоря Fa помимо поперечной составляющей Faq = Fa·cosβ приобретает и продольную составляющую Fad = Fa·sinβ, направленную по оси полюсов. Если машина работает в генераторном режиме, то при смещении щеток в направлении вращения якоря продольная составляющая МДС якоря действует встречно МДС обмотки возбуждения FВ0, что ослабляет основной магнитный поток машины; при смещении щеток против вращения якоря продольная составляющая МДС якоря Fad действует согласованно с МДС FВ0, что вызывает некоторое подмагничивание машины и может явиться причиной искрения на коллекторе.

Если машина работает в двигательном режиме, то при смещении щеток по направлению вращения якоря продольная составляющая МДС якоря Fad подмагничивает машину, а при смещении щеток против вращения якоря продольная составляющая Fad размагничивает машину. При дальнейшем рассмотрении вопросов, связанных с действием продольной составляющей МДС якоря, будем иметь в виду лишь ее размагничивающее действие, так как подмагничивающее действие Fad в машинах постоянного тока общего назначения недопустимо из-за нарушения работы щеточного контакта.
Следует обратить внимание на то, что смещение щеток с геометрической нейтрали влияет и на поперечную составляющую МДС якоря - величину, зависящую от угла β, с ростом которого она уменьшается (Faq = Fa·cosβ). Таким образом, в коллекторных машинах возможны два случая: 1) щетки установлены на геометрической нейтрали и реакция якоря является только поперечной; 2) щетки смещены с геометрической нейтрали и реакция якоря имеет две составляющие - поперечную и продольную (размагничивающую). Принципиально также возможен случай, когда реакция якоря по поперечной оси отсутствует. Это имеет место, когда щетки расположены по оси, перпендикулярной геометрической нейтрали, т. е. когда β = 90° (рис. 26.5, б). Однако такой случай не имеет практического применения, так как машина становится неработоспособной: в генераторном режиме ЭДС машины равна нулю, так как в параллельную ветвь обмотки входит равное число секций со встречным направлением ЭДС, а в двигательном режиме электромагнитные силы активных сторон обмотки якоря, действующие слева и справа от оси щеток, равны и противоположно направлены, а поэтому вращающего момента не создают.
Устранение вредного влияния реакции якоря
В связи с тем, что реакция якоря неблагоприятно влияет на рабочие свойства машины постоянного тока, при проектировании машины принимают меры к устранению реакции якоря или хотя бы к ослаблению ее влияния до допустимых пределов.

Компенсационная обмотка. Наиболее эффективным средством подавления влияния реакции якоря по поперечной оси является применение в машине компенсационной обмотки. Эту обмотку; укладывают в пазы полюсных наконечников (рис. 26.7) и включают последовательно с обмоткой якоря таким образом, чтобы МДС компенсационной обмотки FK была противоположна по направлению МДС обмотки якоря Fa. Компенсационную обмотку делают распределенной по поверхности полюсного наконечника всех главных полюсов машины. При этом линейную нагрузку для компенсационной обмотки принимают равной линейной нагрузке обмотки якоря.

Включение компенсационной обмотки последовательно в цепь якоря обеспечивает автоматичность компенсации МДС якоря при любой (в пределах номинальной) нагрузке машины. Таким, образом, в машине постоянного тока с компенсационной обмоткой при переходе от холостого хода к режиму нагрузки закон распределения магнитной индукции в зазоре главных полюсов остается практически неизменным. Однако в межполюсном пространстве часть МДС якоря остается нескомпенсированной. Нежелательное влияние этой МДС на работу щеточного контакта устраняют применением в машине добавочных полюсов.

Компенсационные обмотки применяют лишь в машинах средней и большой мощности - более 150-500 кВт при U > 440 В, работающих с резкими колебаниями нагрузки, например в двигателях для прокатных станов. Объясняется это тем, что компенсационная обмотка удорожает и усложняет машину и ее применение в некоторых случаях экономически не оправдывается.


Рис. 26.7. Компенсационная обмотка
Увеличение воздушного зазора под главными полюсами. В машинах малой и средней мощности, не имеющих компенсационной обмотки, вредное влияние реакции якоря по поперечной оси ослабляют соответствующим выбором воздушного зазора под главными полюсами. При этом следует иметь в виду, что при достаточно малом воздушном зазоре и значительной линейной нагрузке реакция якоря по поперечной оси может не только ослабить магнитное поле под одной из частей главного полюса, но и перемагнитить его, т. е. изменить полярность - «опрокинуть поле». Некоторое увеличение воздушного зазора под главными полюсами, особенно на их краях, значительно ослабляет действие реакции якоря. Однако не следует забывать, что увеличение воздушного зазора ведет к необходимости повышения МДС обмотки главных полюсов, а следовательно, и к увеличению размеров полюсных катушек, полюсов и габарита машины в целом.

На этом же принципе уменьшения МДС поперечной реакции якоря за счет повышенного магнитного сопротивления на пути ее действия основан и другой способ ослабления действия реакции якоря. Этот способ состоит в том, что сердечники главных полюсов делают из листовой анизотропной (холоднокатаной) стали (обычно применяют сталь марки 3411). Эта сталь в направлении проката обладает повышенной магнитной проницаемостью, а «поперек проката» - небольшой магнитной проницаемостью. Штамповать пластины полюсов из такой стали следует так, чтобы ось полюса совпадала с направлением проката листа стали.

2. Коммутация В машинАХ постоянного тока
2.1 Причины, вызывающие искрение на коллекторе
При работе машины постоянного тока щетки и коллектор образуют скользящий контакт. Площадь контакта щетки выбирают по значению рабочего тока машины, приходящегося на одну щетку, в соответствии с допустимой плотностью тока для выбранной марки щеток. Если по какой-то причине щетка прилегает к коллектору не всей поверхностью, то возникают чрезмерные местные плотности тока, приводящие к искрению на коллекторе.

Причины, вызывающие искрение на коллекторе, разделяют на механические, потенциальные и коммутационные.

Механические причины искрения - слабое давление щеток на коллектор, биение коллектора, его эллиптичность или негладкая поверхность, загрязнение поверхности коллектора, выступание миканитовой изоляции над медными пластинами, неплотное закрепление траверсы, пальцев или щеткодержателей, а также другие причины, вызывающие нарушение электрического контакта между щеткой и коллектором.

Потенциальные причины искрения появляются при возникновении напряжения между смежными коллекторными пластинами, превышающего допустимое значение. В этом случае искрение наиболее опасно, так как оно обычно сопровождается появлением на коллекторе электрических дуг.

Коммутационные причины искрения создаются физическими процессами, происходящими в машине при переходе секций обмотки якоря из одной параллельной ветви в другую.

Иногда искрение вызывается целым комплексом причин. Выяснение причин искрения следует начинать с механических, так как их обнаруживают осмотром коллектора и щеточного устройства. Труднее обнаружить и устранить коммутационные причины искрения.

При выпуске готовой машины с завода в ней настраивают темную коммутацию, исключающую какое-либо искрение. Однако в процессе эксплуатации машины, по мере износа коллектора и щеток, возможно появление искрения. В некоторых случаях оно может быть значительным и опасным, тогда машину необходимо остановить для выяснения и устранения причин искрения Однако небольшое искрение в машинах общего назначения обычно допустимо.

Согласно ГОСТу, искрение на коллекторе оценивается степенью искрения (классом коммутации) под сбегающим краем щетки.

Степень 1 - искрения нет (темная коммутация).

Степень 1-слабое искрение под небольшой частью щетки, не вызывающее почернения коллектора и появления нагара на щетках.

Степень 1 - слабое искрение под большей частью щетки, приводящее к появлению следов почернения на коллекторе, легко устраняемого протиранием поверхности коллектора бензином, и следов нагара на щетках.

Степень 2 - искрение под всем краем щетки. Допускается только при кратковременных толчках нагрузки и при перегрузке. Приводит к появлению следов почернения на коллекторе, не устраняемых протиранием поверхности коллектора бензином, а также следов нагара на щетках.

Степень 3 - значительное искрение под всем краем щетки с появлением крупных вылетающих искр, приводящее к значительному почернению коллектора, не устраняемое протиранием поверхности коллектора бензином, а также к подгару и разрушению щеток. Допускается только для моментов прямого (безреостатного) включения или реверсирования машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальнейшей работы.

Если допустимая степень искрения в паспорте электрической машины не указана, то при номинальной нагрузке она не должна превышать 1.

При вращении якоря машины постоянного тока коллекторные пластины поочередно вступают в соприкосновение со щетками. При этом переход щетки с одной пластины (сбегающей) на другую (набегающую) сопровождается переключением секции обмотки из одной параллельной ветви в другую и изменением, как значения, так и направления тока в этой секции. Процесс переключения секции из одной параллельной ветви в другую и сопровождающие его явления называются коммутацией.

Секция, в которой происходит коммутация, называется коммутирующей, а продолжительность процесса коммутации - периодом коммутации:



где bщ - ширина щетки;

К - число коллекторных пластин;

n-частота вращения якоря, об/мин;

bк - расстояние между серединами соседних коллекторных пластин (коллекторное деление).

Сложность процессов коммутации не позволяет рассмотреть коммутацию в общем виде. Поэтому для получения аналитических и графических зависимостей, поясняющих коммутацию, допускают, что ширина щетки равна коллекторному делению; щетки расположены на геометрической нейтрали; электрическое сопротивление коммутирующей секции и мест ее присоединения к коллектору по сравнению с сопротивлением переходного контакта «щетка- коллектор» пренебрежимо мало (обычно такое соотношение указанных сопротивлений соответствует действительности).

В начальный момент коммутации (рис. 27.1, а) контактная поверхность щетки касается только пластины 1, а коммутирующая секция относится к левой параллельной ветви обмотки и ток в ней равен ia. Затем пластина 1 постепенно сбегает со щетки и на смену ей набегает пластина 2. В результате коммутирующая секция оказывается замкнутой щеткой и ток в ней постепенно уменьшается. В середине процесса коммутации (t -= 0,5 Тк) контактная поверхность щетки равномерно перекрывает обе коллекторные пластины (рис. 27.1, б). В конце коммутации (t = Tк) щетка полностью переходит на пластину 2 и теряет контакт с пластиной 1 (рис. 27.1, в), а ток в коммутирующей секции становится равным -ia, т.е. по значению таким же, что и в начале коммутации, а по направлению - противоположным. При этом коммутирующая секция оказалась в правой параллельной ветви обмотки.

  1   2   3
написать администратору сайта