Навигация по странице:
|
физиология шпоры #. 1. Предмет физиологии и основные понятия функция, механизмы регуляции, внутренняя среда организма, физиологическая и функциональная система. C 1
При слабых со кращениях скелетных мышц импульсация мотонейронов составляет 5-10 имп/с. Для каждой отдельной ДЕ чем выше (до определенного предела) частота возбуждающих импульсов, тем больше сила сокра щения ее мышечных волокон и тем больше ее вклад в развиваемое всей мышцей усилие. С увеличением частоты раздражения мотоней ронов все большее количество ДЕ начинает работать в режиме глад кого тетануса, увеличивая тем самым свою силу по сравнению с одиночными сокращениями в 2-3 раза. В реальных условиях мы шечной деятельности человека большая часть ДЕ активируется в диапазоне от 0 до 50% МПС. Лишь около 10% ДЕ вовлекаются с дальнейшим возрастанием силы сокращения. Следовательно, при увеличении силы сокращения более 50% от максимальной — основ ное значение, а в диапазоне сил от 75 до 100% МПС — даже исключительное, принадлежит росту частоты импульсации двигатель ных нейронов.
4.3. Синхронизация активности различных ДЕ во времени
При со кращении мышцы всегда активируется множество составляющих ее ДЕ. Суммарный механический эффект при этом зависит от того, как связаны во времени импульсы, посылаемые разными мотоней ронами к своим мышечным волокнам. При небольших напряжениях большинство ДЕ работают несинхронно. Совпадение во времени им пульсов мотонейронов отдельных ДЕ называется синхронизацией. Чем большее количество ДЕ работает синхронно, тем большую силу развивает мышца.
Синхронизация активности ДЕ играет важную роль в начале любого сокращения и при необходимости выполнения мощных, быстрых сокращений (прыжки, метания и т.п.). Чем больше совпадают периоды сокращения разных ДЕ, тем с большей скоростью нарастает напряжения всей мышцы и тем большей величины достигает амплитуда ее сокращения.
31. Особенности строения и функций гладких мышц.
Клетки гладкой мышечной ткани не имеют поперечной исчерченности, они веретеновидные, одноядерные, их длина около 0,1 мм. Этот вид ткани участвует в образовании стенок трубкообразных внутренних органов и сосудов (пищеварительного тракта, матки, мочевого пузыря, кровеносных и лимфатических сосудов). Особенности гладкой мышечной ткани: непроизвольность и небольшая сила сокращений, способность к длительному тоническому сокращению, меньшая утомляемость, небольшая потребность в энергии и кислороде.
Функции_гладких_мышц:
1)поддержание_давления_в_полых_органах;
2)регуляция_давления_в_кровеносных_сосудах;
3) опорожнение полых органов и продвижение их содержимого.
32. Cостав и объем крови. Основные функции крови.
Кровь состоит из осадка - форменные элементы (эритроциты, лейкоциты, тромбоциты) и плазмы. Плазма - прозрачная жидкость желтоватого цвета. При свёртывании крови вне организма (коагуляция крови) образуются кровяной сгусток, включающий форменные элементы и фибрин, и сыворотка. От плазмы сыворотка отличается, прежде всего, отсутствием фибриногена.
Плазма, состав плазмы крови, значение белков плазмы
Плазма крови на 90 - 92% состоит из воды, 7 - 8% плазмы составляют белки (альбумины - 4,5%, глобулины - 2 - 3%, фибриноген - до 0,5%), остальное количество сухого остатка приходится на питательные, минеральные вещества и витамины. Общее содержание минеральных веществ приблизительно равняется 0,9%. Условно выделяют макро- и микроэлементы. Границей является концентрация вещества 1мг%. Макроэлементы (натрий, калий, кальций, магний, фосфор) прежде всего обеспечивают осмотическое давление крови и необходимы для жизненно важных процессов: натрий и калий - для процессов возбуждения, кальций - свертывания крови, мышечных сокращений, секреции; микроэлементы (медь, железо, кобальт, йод) рассматриваются как компоненты биологически активных веществ, активаторы ферментативных систем, стимуляторы гемопоэза, метаболизма.
Белки крови и их значение
1. Обеспечивают онкотическое давление плазмы.
2. Обеспечивают вязкость плазмы, что имеет значение в поддержании артериального давления крови. Вязкость плазмы по отношению к вязкости воды равна 2,2 (1,9-2,6).
3. Белки плазмы играют питательную функцию, являяcь источником аминокислот для клеток (в 3л плазмы содержится около 200 г белков, которые обновляются за 5 суток примерно на 50%).
4. Служат переносчиками гормонов, являются транспортной формой микроэлементов, могут связывать катионы плазмы, препятствуя их потере из организма.
5. Принимают участие в свёртывании крови, являются обязательным компонентом иммунной системы организма, обеспечивают взвешенное состояние эритроцитов, играют роль в поддержании кислотно-основного состояния крови.
Белки плазмы методом электрофореза могут быть разделены на 3 группы: альбумины, глобулины и фибриноген; фракция глобулинов разделяется на альфа-1, альфа-2, бета и гамма-глобулины. Альбумины составляют 60% всех белков плазмы, благодаря низкому молекулярному весу (69000 Д) обеспечивают на 80% онкотическое давление. Благодаря большой суммарной площади поверхности, выполняют роль переносчика многих эндогенных (билирубин, желчные кислоты, соли желчных кислот) и экзогенных веществ. Глобулины образуют комплексные соединения с углеводами, липидами, полисахаридами, связывают гормоны, микроэлементы. Фракция гамма-глобулинов включает иммуноглобулины, агглютинины, многие факторы системы свертывания крови. Фибриноген является источником фибрина, который обеспечивает образования
Эритроциты - безъядерные клетки, основной функцией которых является обеспечение газообмена. 95% массы эритроцитов составляет гемоглобин. Содержание эритроцитов в периферической крови колеблется около 5 млн в 1 мкл. У женщин содержание эритроцитов примерно на 10% ниже, чем у мужчин. Размеры эритроцитов: диаметр 7-8 мкм, объём 85-90 мкм3, площадь поверхности 145 мкм2. Основным источником энергии в эритроцитах является глюкоза, которая на 90% окисляется в ходе анаэробного гликолиза. Энергия расходуется на восстановление текучести мембраны, остаточной деформации, работу ионных насосов, синтез глютатиона в реакциях восстановления, защищающих эритроциты от окислительной денатурации. Синтезируемый в эритроцитах 2,3-дифосфоглицерат (2,3-ДФГ) регулирует (уменьшает) сродство гемоглобина к кислороду, что ускоряет процесс отдачи кислорода. Продолжительность жизни эритроцита 60-90, максимально 120 дней. Разрушение происходит, в основном, макрофагами селезёнки и костного мозга, купферовскими клетками печени (внутриклеточный, внесосудистый гемолиз). После отщепления от гемоглобина гем превращается в желчный пигмент билирубин и поступает в кишечник. Частично всасывается, частично выводится из организма в виде стеркобилина (кал) и уробилина (моча). Железо используется для повторного синтеза гемоглобина. Гемоглобин связывается в крови с белком гаптоглобином, этот комплекс в дальнейшем фагоцитируется купферовскими клетками печени. сгустка крови.
Гемоглобин - хромопротеид, окрашенный в красный цвет после присоединения к Fe++ кислорода. Состоит из белка глобина и простетической группы гема. В молекуле гемоглобина содержится одна молекула глобина и четыре молекулы гема. Гем имеет в своем составе атом двухвалентного железа, способный присоединить и отдать молекулу кислорода. Одна молекула гемоглобина присоединяет четыре молекулы кислорода. 1 гр гемоглобина присоединяет 1,34 мл кислорода. Содержание гемоглобина у мужчин 16,6 г в 100 мл крови (166 г/л), у женщин - 130 г/л.
Значение гемоглобина:
1) Выполняет роль переносчика О2 от лёгких к тканям.
2) Участвует в транспорте СО2 от клеток к лёгким.
3) Составляет гемоглобинную буферную систему и регулирует кислотно-основное состояние крови.
Виды гемоглобина
В период внутриутробного развития зародыша (7-12 недель) эритроциты содержат примитивный гемоглобин (HbP), на 9-й неделе появляется гемоглобин фетальный HbF, а перед рождением - гемоглобин взрослых (HbА). Фетальный гемоглобин в течение первого года жизни ребенка полностью заменяется на HbА. Примитивный и фетальный гемоглобины обладают более высоким сродством к кислороду, что обеспечивает его насыщение кислородом при более низком парциальном давлении.
Соединения гемоглобина
В норме гемоглобин содержится в виде нескольких соединений:
1) Восстановленный, или дезоксигемоглобин (Hb). Имеет 4 свободных связи, к которым могут присоединяться лиганды - кислород, угарный газ.
2) Оксигемоглобин (HbО2). Образуется из восстановленного гемоглобина присоединением кислорода.
3) Карбгемоглобин (HbСО2). Образуется в тканях после присоединения к гемоглобину углекислого газа.
Основные функции крови
1. Дыхательная - доставка клеткам кислорода и удаление углекислого газа.
2. Трофическая (питательная) - кровь обеспечивает клетки питательными (глюкоза, аминокислоты, жиры) веществами, водой, витаминами, минеральными веществами.
3. Экскреторная - удаление от клеток конечных продуктов метаболизма.
4. Терморегуляторная - кровь обеспечивает стабилизацию температурных условий для клетки путем транспорта тепловой энергии, образующейся в активно функционирующих клетках.
5. Защитная функция крови направлена на предотвращение критических для клетки подъёмов в крови концентрации экзогенных токсических веществ и ядов путём неспецифической адсорбции их на поверхности клеток крови и образованием комплексов с белками плазмы с последующим выведением их из организма органами выделения. Лейкоциты удаляют из организма генетически чужеродные соединения биологического происхождения путём фагоцитоза, цитолиза, гидролиза или образованием специфических антител в реакциях гуморального и клеточного иммунитета.
6. Гомеостатическая роль крови заключается в стабилизации важных констант организма (концентрации водородных ионов-рН, осмотического давления, ионного состава тканей).
7. Кровь обеспечивает водно-солевой обмен клеток.
8. Циркулирующая кровь обеспечивает связь между органами -важное условие гуморальной регуляции функций в организме. Кровь переносит гормоны и другие биологически активные вещества от мест образования к клеткам-мишеням.
9. Транспортная является следствием функционирования миокарда как насоса, энергия сокращения которого обеспечивает перемещение крови по сосудистой системе организма и её контакт со всеми анатомо-функциональными системами организма.
10. Белки плазмы могут быть использованы организмом в качестве источника аминокислот.
Кровь обладает способностью к свертыванию, что предотвращает опасные для жизни кровопотери при повреждениях тканей и кровеносных сосудов.
Общее количество крови в организме взрослого человека составляет 6 - 8% от массы тела, или приблизительно 4,5 - 6 л. Массивная кровопотеря около 1/3 её объёма (примерно 1,5 л) сопровождается падением артериального давления и последующей гибелью организма.
Скорость оседания эритроцитов.
При стоянии крови, не свёртывающейся вследствие добавления антикоагулянтов, наблюдается оседание эритроцитов. СОЭ в норме равна у мужчин 1-10 мм/ч, у женщин - 2-15 мм/ч. На СОЭ влияют главным образом свойства плазмы (содержание крупномолекулярных белков - фибриногена и глобулинов), а также размеры и форма эритроцитов. При воспалительных и онкологических заболеваниях скорость оседания эритроцитов возрастает в связи с повышенной способностью эритроцитов образовывать агрегаты. На скорость оседания эритроцитов влияет белковый состав плазмы. СОЭ уменьшается при увеличении содержания альбуминов и возрастает при увеличении концентрации фибриногена, гаптоглобина, липопротеидов, иммуноглобулинов.
Лейкоциты содержатся в периферической крови в концентрации 4-9 ґ 109 /л. Увеличение количества лейкоцитов называется лейкоцитозом, снижение - лейкопенией. Причиной лейкопении являются токсические и радиационные воздействия на организм. Лейкоцитоз может развиваться у здорового человека при мышечной работе, во время сильных эмоций, после приёма пищи, у женщин при беременности. Патологический лейкоцитоз характерен для инфекционных и воспалительных заболеваний и обеспечивает повышение реактивности организма. Определение числа лейкоцитов имеет большое диагностическое заболевание.
Группы лейкоцитов:
1. Зернистые (гранулоциты). Содержат специфическую зернистость в цитоплазме.
2. Незернистые (агранулоциты). Не содержат зернистости в цитоплазме.
Гранулоциты - клетки диаметром 7-10 мкм подразделяются на:
а) Эозинофилы. Зернистость окрашивается кислыми красителями. Обезвреживают и разрушают токсины белкового происхождения, комплексы антиген-антитело, фагоцитируют гранулы базофилов и тучных клеток, продуцируют гистаминазу, разрушающую гистамин. Количество увеличивается при аллергических реакциях, глистных инвазиях, интоксикациях;
б) Базофилы. Зернистость окрашивается основными красителями, крупная, в цитоплазме - гранулы, содержащие гистамин и гепарин. Благодаря секреции гистамина и гепарина базофилы способствуют миграции нейтрофилов. Базофилы способствуют так же рассасыванию погибших тканей и заживлению. Мембрана базофилов имеет рецепторы к иммуноглобулину Е, который комплементарен к иммунному комплексу, в составе которого есть этот глобулин. После гидролиза лизосомальными ферментами в цитоплазме базофила иммунного комплекса, рецептор вновь синтезируется и через 12 - 24 часа транслоцируется на поверхность мембраны. Благодаря таким циклам, базофил способен элиминировать из плазмы большое количество антигенов, блокированных иммуноглобулином Е.
в) Нейтрофилы имеют мелкую зернистость, которая окрашивается нейтральными красителями. По форме ядра и зрелости делятся на:
- юные (метамиелоциты) - ядро рыхлое, бобовидное,
- палочкоядерные - ядро в виде изогнутой палочки, подковки или буквы S,
- сегментоядерные - ядро состоит из 2-3 долек, связанных между собой тонкими перемычками. Это зрелые нейтрофилы.
Нейтрофилы - микрофаги - фагоцитируют, переваривают и уничтожают микробов, обладают противовирусным действием (продуцируют интерферон). Метаболической особенностью нейтрофилов является анаэробный гликолиз, поэтому нейтрофилы способны осуществлять фагоцитоз в разрушенных и размозженных тканях с ограниченной оксигенацией.
Агранулоциты не содержат зернистости.
а) Лимфоциты - клетки размером 4,5 - 10 мкм ( подразделяются на малые, средние, большие). Содержат очень плотное, темное ядро, цитоплазма окружает ядро в виде узкой каймы, окрашивается в голубой или синий цвет основными красителями.
По функции и месту созревания лимфоцитов различают:
- Т-лимфоциты - дифференцируются в тимусе. Участвуют в клеточном иммунитете.
- В-лимфоциты - дифференцируются в костном мозге. Синтезируют антитела и участвуют в гуморальном иммунитете.
б) Моноциты имеют размеры 10-12 мкм, ядро - бобовидное, подковообразное, дольчатое, цитоплазма окружает ядро более широкой полосой, светло-голубая. Являются тканевыми макрофагами. Завершают процесс фагоцитоза в очагах воспаления, фагоцитируют и собственные поврежденные ткани. Способствуют восстановлению, регенерации.
Лейкоцитарная формула - это процентное соотношение всех видов лейкоцитов. Лейкоцитарная формула, наряду с изучением изменений числа лейкоцитов имеет диагностическое значение.
Тромбоциты имеют дисковидную форму диаметром от 2 до 5 мкм, толщиной около 0,5 мкм. В крови содержится 180-320 х 109 /л. Образуются в костном мозге.
Значение тромбоцитов в организме:1) Участвуют в гемостазе (содержат тромбоцитарные факторы свёртывания).
2) Участвуют в транспорте креаторных веществ, важных для сохранения сосудистой стенки, стимулируют восстановление эндотелия.3) Возможно, фагоцитируют низкомолекулярные соединения.
33. Эритроциты, их количество и функции. Образование и разрушение эритроцитов. Влияние мышечной работы на количество эритроцитов в крови.
Эритроциты - безъядерные клетки, основной функцией которых является обеспечение газообмена. 95% массы эритроцитов составляет гемоглобин. Содержание эритроцитов в периферической крови колеблется около 5 млн в 1 мкл. У женщин содержание эритроцитов примерно на 10% ниже, чем у мужчин. Размеры эритроцитов: диаметр 7-8 мкм, объём 85-90 мкм3, площадь поверхности 145 мкм2. Основным источником энергии в эритроцитах является глюкоза, которая на 90% окисляется в ходе анаэробного гликолиза. Энергия расходуется на восстановление текучести мембраны, остаточной деформации, работу ионных насосов, синтез глютатиона в реакциях восстановления, защищающих эритроциты от окислительной денатурации. Синтезируемый в эритроцитах 2,3-дифосфоглицерат (2,3-ДФГ) регулирует (уменьшает) сродство гемоглобина к кислороду, что ускоряет процесс отдачи кислорода. Продолжительность жизни эритроцита 60-90, максимально 120 дней. Разрушение происходит, в основном, макрофагами селезёнки и костного мозга, купферовскими клетками печени (внутриклеточный, внесосудистый гемолиз). После отщепления от гемоглобина гем превращается в желчный пигмент билирубин и поступает в кишечник. Частично всасывается, частично выводится из организма в виде стеркобилина (кал) и уробилина (моча). Железо используется для повторного синтеза гемоглобина. Гемоглобин связывается в крови с белком гаптоглобином, этот комплекс в дальнейшем фагоцитируется купферовскими клетками печени. сгустка крови.
|
|
|