Главная страница
Навигация по странице:

Логика (экз.ответы). 1 Предмет и значение логики. Формальная логика



Скачать 170.5 Kb.
Название 1 Предмет и значение логики. Формальная логика
Анкор Логика (экз.ответы).doc
Дата 28.12.2017
Размер 170.5 Kb.
Формат файла doc
Имя файла Логика (экз.ответы).doc
Тип Документы
#14430
страница 2 из 4
1   2   3   4

10 Ограничение и обобщение понятий. В основе перехода от родовых понятий к видовым и от видовых к родовым лежит формально-логический закон обратного отношения между содержанием и объемом понятий. Ограничение понятий – это логическая операция, посредством которой совершается переход от понятия с большим объемом (род) к понятию с меньшим объемом (вид) посредством прибавления к содержанию родового понятия видообразующего признака. Ограничение одного и того же понятия может идти по разным направлениям, поскольку ограничение понятия есть его конкретизация, которая связана с учетом особенностей при образовании более узкого понятия. Ограничить понятие – значит перейти от понятия с большим объемом, но меньшим содержанием к понятию с меньшим объемом, но большим содержанием. Таким образом, ограничение понятий в терминах описанных выше отношений между понятиями представляет собой переход от подчиняющего понятия к подчиненному, а с точки зрения объемов понятий – это переходы от классов (множеств) к подклассам (подмножествам). Пределами ограничения являются единичные понятия. Например, результатом ограничения понятия «студент» является понятие «студент-юрист Петров». Обобщение понятий – это логическая операция, посредством которой совершается переход от понятия с меньшим объемом (вид), к понятию с большим объемом (род), при этом содержание второго понятия уменьшается согласно закону обратного отношения, но это не значит, что при этом уменьшается количество его признаков. Это означает лишь то, что содержание второго понятия логически следует из содержания первого.

11Операции с объемами (классами) понятий. Класс, или множество (т. е. совокупность предметов, охватываемая объемом понятия), может включать в себя подклассы, или подмножества. Понятие, из объема которого происходит выделение подкласса, называется родовым, или родом; понятие, объем которого выделяется из родового понятия – видовым, или видом (например, наука – родовое понятие, химия – видовое). Класс (множество) – это совокупность предметов, которые можно мыслить вместе на основании удовлетворения ими каким-либо условиям или признакам. Классы могут быть единичными, т. е. состоящими только из одного элемента; конечными, состоящими из конечного числа элементов; бесконечными – элементы которых принципиально не допускают пересчета, например, бесконечным классом является класс всех четных чисел; неопределенными; пустыми, т. е. вовсе не содержать элементов, и универсальными, которые противополагаются пустым классам и состоят из всех объектов подлежащей рассмотрению предметной области. Подкласс (подмножество) – это такое множество, каждый элемент которого в то же время является элементом более широкого множества. Из двух и более классов с помощью определенных операций можно образовать новый класс. Основными операциями над классами являются объединение классов (сложение), пересечение классов (умножение), образование дополнения к классу (отрицание) и вычитание класса (разность). Объединением классов (сложением) называется логическая операция, в результате которой образуется новый класс, состоящий из таких объектов, каждый из которых является элементом, по крайней мере, одного из слагаемых классов. Пересечением классов (умножением) – называется логическая операция, в результате которой образуется новый класс, состоящий из общих умножаемым классом элементов. Класс А∩В, полученный в результате умножения, называется произведением. Свойства дополнения: Отношения между дополняемым классом и его дополнением есть отношения противоречия, которое характеризуется тем, что каждый из объектов какой-нибудь универсальной области может мыслиться в объеме только одного из противоречащих понятий.

12 Суждение как форма мышления. Суждение можно определить как форму мысли, содержащую описание некоторой ситуации и утверждение или отрицание наличия этой ситуации в действительности, в связи, с чем суждение определяют обычно как утверждение или отрицание чего-либо о чем-либо. Впрочем, отрицание наличия некоторой ситуации в действительности есть утверждение ее отсутствия. Поэтому можно сказать, что суждение всегда есть некоторое утверждение, а именно утверждение о наличии или отсутствии некоторой ситуации в действительности. Таким образом, именно наличие утверждения или отрицания описываемой ситуации отличает суждение от понятия. Характерной особенностью суждения с логической точки зрения является то, что оно – при логически правильном его построении – всегда истинно или ложно. И связано это как раз с наличием в суждении утверждения или отрицания чего-либо. Понятие, которое в отличие от суждения содержит только описание предметов и ситуаций с целью их мысленного выделения, не имеет истинностных характеристик. Суждение следует отличать и от предложения. Звуковая оболочка суждения – предложение. Суждение всегда является предложением, но не наоборот. Суждение выражается в повествовательном предложении, в котором утверждается, отрицается или сообщается что-либо. Таким образом, вопросительное, побудительное и повелительное предложения суждениями не являются. Структуры предложения и суждения не совпадают. Грамматический строй одного и того же предложения различается в разных языках, тогда как логический строй суждения всегда одинаков у всех народов. Следует отметить также отношения между суждением и высказыванием. Высказывание – это термин математической логики, которым обозначается предложение естественного или искусственного языка, рассматриваемое с точки зрения его истинности, ложности, действительности, необходимости и возможности. Суждение является содержанием любого высказывания. Такие предложения, как «число n является простым», невозможно считать высказыванием, так как о нем нельзя сказать, является ли оно истинным или ложным. В зависимости от того, какое содержание будет иметь переменная «n», можно установить его логическое значение. Подобные выражения называются пропозициональными переменными. Высказывание обозначается одной какой-либо буквой латинского алфавита. Оно рассматривается как неразложимая единица. Это значит, что в нем не разглядывается никакая структурная единица в качестве его части. Такое высказывание называется атомарным (элементарным) и соответствует простому суждению. Из двух и более атомарных высказываний посредством логических операторов (связок) образуется сложное или молекулярное высказывание. В отличие от высказывания суждение представляет собой конкретное единство субъекта и объекта, связанных по смыслу. Примеры суждений и высказываний: Простое высказывание – А; простое суждение – «S есть (не есть) P». Сложное высказывание – A⊃B; сложное суждение – «если S1 есть P1, то S2 есть P2».

13 Простое суждение. В традиционной логике установилось членение суждения на субъект, предикат и связку. Субъект – часть суждения, в которой выражается предмет мысли. Предикат – часть суждения, в которой что-либо утверждается либо отрицается о предмете мысли. Например, в суждении «Земля – планета Солнечной системы» субъектом является «Земля», предикатом «планета солнечной системы». Нетрудно заметить, что логический субъект и предикат не совпадают с грамматическими, т. е. с подлежащим и сказуемым. Вместе субъект и предикат называются терминами суждения и обозначаются соответственно латинскими символами S и P. Кроме терминов, суждение содержит связку. Как правило, связка выражается словами «есть», «суть», «является», «быть». В приведенном примере она опущена. По характеру предиката все суждения делятся на суждения свойства (атрибутивные суждения) и суждения отношения. Атрибутивные суждения – суждения, в предикате которых выражаются свойства или признаки предмета. Например, «Человек – разумное существо». Атрибутивное суждение называют также категорическим, поскольку утверждение или отрицание свойств или признаков предмета производится с необходимостью, т. е. безотносительно к каким-либо условиям. Логическая схема категорического (атрибутивного) суждения S есть P. Суждения отношения (релятивные) – суждения, в предикате которых выражаются отношения между предметами. Например, «Иван любит Марью», «Волга длиннее Оки», «Свой дурак дороже чужих умников» и т. д. В зависимости от числа предметов, вступающих в то или иное отношение, различают двухчленные, трехчленные, n-членные отношения. . Структура суждения отношения символически записывается так: R (x1, … xn). В настоящее время наиболее разработанной является теория двухчленных (бинарных) отношений. Свойства бинарных отношений 1. Отношение рефлексивности Некоторое отношение, имеющее место среди предметов определенного класса, называется рефлексивным, если каждый предмет этого класса находится в данном отношении к самому себе. 2. Отношение симметричности. Отношение называется симметричным, если для любых предметов x и y данного класса верно, что если предмет x находится в каком-то отношении к предмету y, то и предмет y находится в этом отношении к предмету x. Отношения асимметричности. Отношение между предметом на-ывается асимметричным, если перестановка их влечет за собой исчезновение этого отношения. 3. Отношение транзитивности. Отношение называется транзитивным, если из наличия этого отношения между предметами x и y, а также между y и z следует его наличие между x и z ()xRzyRzxRyzyx→∧∀∀∀. Примером транзитивных отношений являются отношения «больше», «равно», «ниже». 4. Отношение эквивалентности. Отношение будет эквивалентным, если оно обладает свойствами рефлексивности, симметричности и транзитивности. Эквивалентными будут отношения «равенство», «тождество», «сверстничество» (одного возраста). По качеству и количеству атрибутивные суждения делятся на четыре вида. 1. Общеутвердительные – суждения, являющиеся одновременно общими и утвердительными. Например, «Все крокодилы суть пресмыкающиеся животные». 2. Частноутвердительные – суждения, частные и утвердительные одновременно. Например, «Некоторые юристы являются прокурорами». 3. Общеотрицательные – общие и отрицательные одновременно. Например, «Ни одна планета не светит собственным светом». 4. Частноотрицательные – частные и отрицательные одновременно. Например, «Некоторые утверждения не являются истинными». Единичные суждения в отдельную группу не выделяются, анализируются как общие. Общеутвердительные- А. Общеотрицательные – Е. Частноутвердительные – I. Частноотрицательные – О.

14 Сложное суждение и его виды. Сложное суждение – это суждение, образованное из простых посредством логических союзов: конъюнкции, дизъюнкции, импликации, эквивалентности и отрицания. Конъюнктивное суждение – это суждение, которое является истинным тогда и только тогда, когда истинны все входящие в него суждения. Образуется посредством логического союза конъюнкции, выражающегося в естественном языке грамматическими союзами «и», «да», «а», «но», «однако». Имеется два вида дизъюнктивных суждений: строгая (исключающая) дизъюнкция и нестрогая (неисключающая) дизъюнкция. Строгая (исключающая) дизъюнкция – это сложное суждение, принимающее логическое значение истины тогда и только тогда, когда истинно только одно из входящих в него суждений. Нестрогая (неисключающая) дизъюнкция – это сложное суждение, принимающее логическое значение истины тогда и только тогда, когда истинным является, по крайней мере, одно из простых суждений, входящих в сложное. Импликация – это сложное суждение, принимающее логическое значение ложности тогда и только тогда, когда предшествующее суждение, называемое антецедентом, истинно, а последующее, называемое консеквентом, ложно. В естественном языке импликация выражается союзом «если…, то» в смысле «неверно, что р и не q». Эквивалентность – это сложное суждение, которое принимает логическое значение истины тогда и только тогда, когда входящие в него суждения обладают одинаковым логическим значением, т. е. одновременно либо истинны, либо ложны. Логический союз эквивалентности выражается такими грамматическими союзами, как «тогда и только тогда, когда», «если и только если». Двойное отрицание – это операция по отрицанию отрицательного суждения. Повторное отрицание ведет к утверждению или, иначе, отрицание отрицания равносильно утверждению: PP⊃ – «если P, то неверно, что не-P», или PP≡ – «неверно, что не-P, если и только если верно, что P».

15 Отношения между суждениями по значениям истинности. Между суждениями, имеющими один и тот же субъект и предикат, имеют место следующие отношения: отношение противоречия или контрадикторности; отношение противоположности или контрарности; отношение подпротивности; отношение подчинения. Эти отношения принято изображать в виде схемы – так называемого «логического квадрата». Буквы А, Е, I, О, помещенные в углах квадрата, обозначают виды суждений, а стороны и диагонали – возможные отношения между суждениями. Отношение противоречия (А – О; Е – I) Отношение противоречия между суждениями с одинаковыми субъектами и предикатами характеризуются тем, что находящиеся в этом отношении суждения не могут быть одновременно ни истинными, ни ложными. Если одно из противоречащих суждений истинно, то другое непременно ложно и наоборот, если одно из них ложно, то другое истинно. Примером противоречащих высказываний являются следующие: А – «Все люди смертны» и О – «Некоторые люди не являют- смертными»; Е – «Ни один пацифист не хочет войны» и I – «Некоторые пацифисты хотят войны». Отношение противоположности (А – Е) Отношение противоположности характеризуется тем, что находящиеся в этом отношении суждения не могут быть одновременно истинными, но могут быть одновременно ложными. Отсюда следует, что если одно из противоположных суждений истинно, то другое ложно, но не наоборот. Если одно из них ложно, то другое неопределенно. Примеры противоположных суждений: А – «Все рыбы дышат жабрами», Е – «Ни одна рыба не дышит жабрами». Отношение подпротивности (I – O) Отношение подпротивности состоит в том, что суждения, находящиеся в этом отношении, не могут быть одновременно ложными, но могут быть одновременно истинными. Отсюда следует, что если одно из них ложно, то другое истинно. Если же одно истинно, то другое неопределенно. Например: О – «Некоторые люди бывали на Марсе» – ложно, I – «Некоторые люди не бывали на Марсе» – истинно. Отношение подчинения имеет место между, с одной стороны, общими суждениями, с другой – между частными (А – I), (Е – О). При этом общие называются подчиняющими, частные – подчиненными. Отношение подчинения характеризуется тем, что истинность подчиняющих суждений обусловливает истинность подчиненных, но не наоборот. В то же время ложность подчиненных суждений обусловливает ложность подчиняющих, но не наоборот. Так, из истинности общеутвердительного суждения (А) «Все планеты светят отраженным светом» следует истинность частноутвердительного суждения (I) «Некоторые планеты светят отраженным светом».

16 Деление суждений по модальности. Всякое суждение может быть рассмотрено с точки зрения модальности (лат. мodus – мера, способ, вид). Модальность – характеристика суждения в зависимости от степени устанавливаемой им достоверности, т. е. от того, утверждается ли в нём возможность, действительность или необходимость чего-либо. В традиционной формальной логике суждения по модальности делятся на три группы: суждения возможности (проблематические), суждения действительности (ассерторические) и суждения необходимости (аподиктические). В суждении возможности отражается вероятность наличия или отсутствия признаков у предмета – напр.: «Возможно, в этом году я поеду к морю». В суждении действительности констатируется наличие или отсутствие у предмета того или иного признака – напр.: «Некоторые числа делятся на 5». В суждении необходимости отображается такой признак, который является необходимым, существенным для предмета – напр.: «Живые организмы не могут существовать без обмена веществ». Модальность – одно из важнейших свойств суждения, так как она выражает степень существенности того или иного признака для данного предмета, отображённого в суждении. При этом следует иметь в виду, что различие суждений по модальности определяется не субъективными желаниями, а тем, насколько основательны и реалистичны способы установления и объяснения реальности. Например, наличие в суждении слова «необходимо» ещё не означает, что это суждение непременно аподиктическое. Аналогично высказывания о вероятности наступления того или иного события или о принадлежности какого-либо признака предмету опираются на исследования фактов, на изучение объективной действительности.

17 Понятие о логическом законе. Логический союз – это способ соединения простых суждений в сложное, при котором логическое значение последнего устанавливается в соответствии с логическими значениями составляющих его простых суждений. Особенность сложных суждений заключается в том, что их логическое значение, т. е. истинность или ложность, определяется не смысловой связью простых суждений, составляющих сложное, но двумя параметрами: логическим значением простых суждений, входящих в сложное, и характером логической связки, соединяющей простые суждения. Логическое значение сложного суждения устанавливается при помощи таблиц истинности. Таблицы истинности строятся следующим образом: на входе выписываются все возможные комбинации логических значений простых суждений, из которых состоит сложное суждение. Число этих комбинаций можно высчитать по формуле: 2n, где n – число простых суждений, составляющих сложное. На выходе выписывается значение сложного суждения.

18 Умозаключение как форма мышления. Умозаключение – форма мышления, посредством которой выводится новое суждение на основании одного или более известных суждений. Ранее известные исходные суждения, из которых выводится новое суждение, называются посылками умозаключения, а новое суждение, полученное в результате сопоставления посылок, заключением. Например, в умозаключении проводник– Медьметалл– Медьпроводники– металлы .Все первые два суждения – посылки, а последнее – заключение. Логический переход от посылок к заключению называется выводом.

19 Дедуктивные умозаключения. Дедуктивные – умозаключения, между посылками и заключением которых имеет место отношение логического следования, которое можно определить следующим образом: из суждения α логически следует суждение β тогда и только тогда, когда α и β связаны по смыслу, а α→β является логическим законом. При этом α – символическое выражение посылок, соединенных логическим союзом конъюнкция, β – символическое выражение заключения. Умозаключение будет дедуктивным, если его символическое выражение будет представлять собой логический закон, т. е. тождественно-истинную формулу, что проверяется посредством таблицы истинности.
1   2   3   4
написать администратору сайта