Навигация по странице:
|
методика математики. Литература для обучающихся 5 класс М. Н. Перова и др Математика, Учебник для 5 класса специальных (коррекционных) образовательных учреждений VIII вида. М. Просвещение, 2002 г
Оценка «5» ставится ученику, если он; а) дает правильные, осознанные ответы на все поставленные вопросы, может подтвердить правильность ответа предметно-практическими действиями, знает и умеет применять правила умеет самостоятельно оперировать изученными математическими представлениями; б) умеет самостоятельно, с минимальной помощью учителя, правильно решить задачу, объяснить ход решения; в) умеет производить и объяснять устные и письменные вычисления; г) правильно узнает и называет геометрические фигуры, их элементы, положение фигур по отношению друг к другу на плоскости их пространстве, д) правильно выполняет работы по измерению и черчению с помощью измерительного и чертежного инструментов, умеет объяснить последовательность работы.
Оценка «4» ставится ученику, если его ответ в основном соответствует требованиям, установленным для оценки «5», но: а) при ответе ученик допускает отдельные неточности, оговорки, нуждается в дополнительных вопросах, помогающих ему уточнить ответ; б) при вычислениях, в отдельных случаях, нуждается в дополнительных промежуточных записях, назывании промежуточных результатов вслух, опоре на образы реальных предметов; в) при решении задач нуждается в дополнительных вопросах учителя, помогающих анализу предложенной задачи уточнению вопросов задачи, объяснению выбора действий; г) с незначительной по мощью учителя правильно узнает и называет геометрические фигуры, их элементы, положение фигур на плоскости, в пространстве, по отношению друг к другу; д) выполняет работы по измерению и черчению с недостаточной точностью.
Все недочеты в работе ученик легко исправляет при незначительной помощи учителя, сосредоточивающего внимание ученика на существенных особенностях задания, приемах его выполнения, способах объяснения. Если ученик в ходе ответа замечает и самостоятельно исправляет допущенные ошибки, то ему может быть поставлена оценка «5».
Оценка «З» ставится ученику, если он: а) при незначительной помощи учителя или учащихся класса дает правильные ответы на поставленные вопросы, формулирует правила может их применять; б) производит вычисления с опорой на различные виды счетного материала, но с соблюдением алгоритмов действий; в) понимает и записывает после обсуждения решение задачи под руководством учителя; г) узнает и называет геометрические фигуры, их элементы, положение фигур на плоскости и в пространстве со значительной помощью учителя или учащихся, или с использованием записей и чертежей в тетрадях, в учебниках, на таблицах, с помощью вопросов учителя; д) правильно выполняет измерение и черчение после предварительного обсуждения последовательности работы демонстрации приёмов ее выполнения.
Оценка «2» ставится ученику, если он обнаруживает, незнание большей части программного материала не может воспользоваться помощью учителя, других учащихся.
2. Письменная проверка знаний и умений учащихся
Учитель проверяет и оценивает все письменные работы учащихся. При оценке письменных работ используются нормы оценок письменных контрольных работ, при этом учитывается уровень самостоятельности ученика, особенности его развития.
По своему содержанию письменные контрольные работы могут быть либо однородными (только задачи, только примеры, только построение геометрических фигур и т. д.), либо комбинированными,— это зависит от цели работы, класса и объема проверяемого материала.
Объем контрольной работы должен быть таким, чтобы на ее выполнение учащимся требовалось: во втором полугодии I класса 25—35 мин, во II — IV классах 25—40 мин, в V — IХ классах 35 — 40 мин. Причем за указанное время учащиеся должны не только выполнить работу, но и успеть ее проверить.
В комбинированную контрольную работу могут быть включены; 1—3 простые задачи, или 1—3 простые задачи и составная (начиная со II класса), или 2 составные задачи, примеры в одно и несколько арифметических действий (в том числе и на порядок действий, начиная с III класса) математический диктант, сравнение чисел, математических выражений, вычислительные, измерительные задачи или другие геометрические задания.
При оценки письменных работ учащихся по математике грубыми ошибками следует считать; неверное выполнение вычислений вследствие неточного применения правил и неправильное решение задачи (неправильный выбор, пропуск действий, выполнение ненужных действий, искажение смысла вопроса, привлечение посторонних или потеря необходимых числовых данных), неумение правильно выполнить измерение и построение геометрических фигур.
Негрубыми ошибками считаются ошибки допущенные в процессе списывания числовых данных (искажение, замена), знаков арифметических действий, нарушение в формулировке вопроса (ответа) задачи, правильности расположения записей, чертежей. небольшая неточность в измерении и черчении.
Оценка не снижается за грамматические ошибки, допущенные в работе. Исключение составляют случаи написания тех слов и словосочетаний, которые широко используются на уроках математики (названия компонентов и результатов, действий, величин и др.).
При оценке комбинированных работ:
Оценка «5» ставится, если вся работа выполнена без ошибок.
Оценка «4» ставится, если в работе имеются 2—3 негрубые ошибки.
Оценка «3» ставится, если решены простые задачи, но не решена составная или решена одна из двух составных задач, хотя и с негрубыми ошибками, правильно выполнена большая часть других заданий.
Оценка «2» ставится, если не решены задачи, но сделаны попытки их решить и выполнено менее половины других заданий.
Оценка «1» ставится, если ученик не приступал к решению задач; не выполнил других заданий.
При оценке работ, состоящих из примеров и других заданий, в которых не предусматривается решение задач:
Оценка «5» ставится, если все задания выполнены правильно.
Оценка «4» ставится, если допущены 1—2 негрубые ошибки.
Оценка «3» ставится, если допущены 1—2 грубые ошибки или 3—4 негрубые.
Оценка «2» ставится, если допущены 3—4 грубые шибки и ряд негрубых.
Оценка «1» ставится, если допущены ошибки в выполнении большей части заданий.
При оценке работ, состоящих только из задач с геометрическим содержанием (решение задач на вычисление градусной меры углов, площадей, объемов и т. д.,задач на измерение и построение и др.):
Оценка «5» ставится, если все задачи выполнены правильно.
Оценка «4» ставится, если допущены 1-— 2 негрубые ошибки при решении задач на вычисление или измерение, а построение выполнено недостаточно точно.
Оценка «3» ставится, если не решена одна из двух-трех данных задач на вычисление, если при измерении допущены небольшие неточности; если построение выполнено правильно, но допущены ошибки при размещении чертежей на листе бумаги, а также при обозначении геометрических фигур буквами.
Оценка «2» ставится, если не решены две задачи на вычисление, получен неверный результат при измерении или нарушена последовательность построения геометрических фигур.
Оценка «1» ставится, если не решены две задачи на вычисление, получены неверные результаты при измерениях, не построены заданные геометрические фигура.
3. Итоговая оценка знаний и умений учащихся
1. За год знания и умения учащихся оцениваются одним баллом.
2. При выставлении итоговой оценки учитывается как уровень знаний ученика, так и овладёние им практическими умениями.
З. Основанием для выставления итоговой отметки служат: результаты наблюдений учителя за повседневной работой ученика, текущих и итоговых контрольных работ.
Методы обучения математике
Методы обучения - способы совместной деятельности учителя и учащихся, при помощи которых учитель передает, а учащиеся усваивают знания, умения, развивает способности учащихся, формирует их мировоззрение.
Выбор методов обучения зависит от:
Задач школы на современном этапе развития,
учебного предмета,
содержания изучаемого материала,
возраста и уровня развития учащихся,
уровня готовности их к овладению учебным материалом
В условиях школы VIII вида, учитывая дефекты познавательной деятельности учащихся, их эмоционально-волевой сферы, необходимо прежде всего развивать исполнительскую, воспроизводящую деятельность детей. Но только развитием этих видов деятельности учащихся нельзя ограничиваться, так как не будут в должной.
словесные методы:
1.Рассказ или изложение знаний, или объяснение — это последовательное логическое изложение материала. Этот метод при обучении математике чаще всего применяется при ознакомлении с теоретическими знаниями (правилами, свойствами действий, порядком действий), вычислительными приемами. Рассказ – метод изложения знаний, использующийся при ознакомлении учащихся с новыми знаниями.
При объяснении учитель связывает новый материал с пройденным, включая его в систему знаний, устанавливая связи и взаимозависимость между уже имеющимися у учащихся знаниями и приобретаемыми вновь. При этом он широко использует наглядность: предметные пособия, иллюстративные таблицы, дидактический раздаточный материал, схемы, чертежи, графики, арифметические записи чисел, действий, решений задач.
Изложение знаний, т. е. слово учителя, сочетается с наблюдениями учащихся. В процессе изложения знаний учитель выделяет существенные признаки, варьируя несущественные, ведет учащихся, опираясь на чувственную основу, к выводам, правилам, обобщениям.
Объяснение нового материала в школе VIII вида не должно быть продолжительным, особенно в младших классах. Новый материал следует разбить на небольшие, логически завершенные «порции». На одном уроке излагается небольшой по объему материал. Изложение учитель может иногда прерывать вопросом, обращенным к учащимся: «Как вы думаете, что нужно делать дальше?» или «Где нужно подписать десятки при сложении в столбик?» Вопросы ставятся для того, чтобы выяснить, понимают ли учащиеся излагаемый материал, успевают ли следить за изложением или внимание их отвлечено. Они активизируют и познавательную деятельность учащихся, позволяют направлять их внимание.
Беседа – вопросно-ответная форма с использованием имеющихся знаний учащихся, их наблюдения, прошлый опыт. Используется на этапе введения в новую тему, при ознакомлении с новым материалом. После беседы учитель должен дать учащимся образец ответа в виде связного рассказа. Например, после беседы и выводов о количестве элементов в прямоугольнике и свойствах его углов и сторон учитель дает образец ответа детям: «Прямоугольник имеет 4 угла, 4 вершины, 4 стороны. Все углы у прямоугольника прямые. Противоположные стороны равны».
3. работа по учебнику или другим печатным материалам,
наглядные методы:
1. наблюдение,
2. демонстрация предметов или их изображений. Нередко объяснение учителя сопровождается демонстрацией наглядных пособий, практической работой учащихся с дидактическим материалом.
практические методы
измерение,
вычерчивание геометрических фигур,
лепка, аппликация,
моделирование,
нахождение значений числовых выражений и т. д.).
Самостоятельная работа – метод организации деятельности учащихся, при котором новые теоретические знания ученики приобретают самостоятельно и могут применять их в аналогичной, а порой и новой ситуации. Данный метод используется на этапе закрепления новых знаний, формирования умений, совершенствования знаний.
Практическая работа с предметами, направляемая объяснением учителя, может служить базой для обобщения. Например, учитель знакомит учащихся с названием и количеством элементов треугольника. Каждый ученик получает треугольник. У всех учащихся они разного вида, размера, цвета. Модель треугольника демонстрируется и перед классом. Учитель объясняет, что треугольник имеет углы, показывает их. Учащимся предлагается практическая работа — отыскать углы на моделях своих треугольников и посчитать их количество. Ученики должны сделать вывод: у любого треугольника три угла. Учитель знакомит учащихся с названием и других элементов треугольника: вершинами, сторонами. Учащиеся отыскивают их на своих моделях, под-считывают количество и приходят к выводу, что сторон и вершин в треугольнике тоже по три. Они обводят, чертят треугольник, подписывают названия его элементов на моделях или чертежах. Однако метод изложения знаний требует максимума активности от учителя, а не от учащихся. В коррекционной школе следует отдать предпочтение таким методам обучения, которые активизируют познавательную деятельность учащихся, включают их в поиски путей решения поставленных вопросов. Этим требованиям отвечает использование метода беседы, особенно эвристической Беседой учитель пользуется тогда, когда учащиеся имеют определенный запас представлений для формирования на их основе новых знаний, понятий. Он готовит систему вопросов, с помощью которых не только воспроизводится усвоенный ранее учащимися материал, но организуются наблюдения учащихся. Учитель управляет восприятием, помогает выделить главное, установить взаимоотношения между изучаемыми фактами, свойствами объектов, явлений, их обусловленностью и ведет учащихся к обобщениям, выводам, выбору действий при решении задач. Беседа активизирует учащихся, будит мысль.
ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ МЕТОДОВ ОБУЧЕНИЯ НА УРОКАХ МАТЕМАТИКИ
мере решаться задачи коррекции, подготовки к овладению профессией, социальной реабилитации и адаптации.
Развивая воспроизводящую деятельность учащихся, учитель ставит и решает более сложную задачу — развивает их инициативу, творческую деятельность, учит использовать полученные знания сначала в аналогичных, а затем в новых условиях, для решения новых задач. Это возможно лишь при учете не только особенностей их познавательной деятельности, но и личностных качеств, их отношения к процессу познания, учению.
Прежде чем сообщить учащимся те или иные знания, необходимо создать у них определенную положительную установку на восприятие и осмысление этих знаний. Это достигается созданием игровой или жизненно-практической ситуации, в которой ученики почувствовали бы недостаток знаний для решения определенной жизненной или учебной задачи, их заинтересовавшей. У учащихся пробуждается чувство ожидания нового, неизвестного.
Например, прежде чем познакомить учащихся с вычислением площади прямоугольника, учитель спрашивает у них: «Удобно ли определять площадь прямоугольника путем наложения на него мер площади? Представьте себе, что нам нужно определить площадь вашей мастерской, где стоят тяжелые станки, верстаки, доски и т. д. Чтобы измерить эту площадь наложением квадрат-ных метров, все надо вынести из мастерской. Это потребует много сил, времени. А не знаете ли вы, как еще можно определить площадь мастерской?» Учащиеся не могут дать ответ на этот вопрос. Они готовы слушать объяснение учителя. При этом учитель, как правило, использует метод рассказа, или изложения знаний.
Беседа как метод обучения широко используется при решении задач. Однако вопросы, которые ставятся перед учащимися, носят различный характер. Например, предлагается задача: «Для праздника купили 8 кг печенья на сумму 72 р. и 9 кг конфет на сумму 126 р. Во сколько раз дороже 1 кг конфет, чем 1 кг печенья?»
1-й вариант. Что купили для праздника? Сколько килограммов печенья купили? Сколько денег заплатили за 8 кг печенья? Что можно узнать, если известно, что куплено 8 кг печенья на сумму 72 р.? Сколько килограммов конфет купили? Сколько денег заплатили за 9 кг конфет? Что можно узнать, если известно, что за 9 кг конфет уплатили 126 р.? Мы узнали стоимость печенья и конфет. Можно ли узнать, во сколько раз дороже конфеты, чем печенье?
2-й вариант. Какой главный вопрос задачи? Что нужно знать, чтобы ответить на главный вопрос задачи? Можно ли из условия задачи узнать, сколько стоит 1 кг печенья? Можно ли узнать, сколько стоит 1 кг конфет? Когда будем знать, сколько стоит 1 кг печенья и 1 кг конфет, можно ли ответить на главный вопрос задачи?
3-й вариант. Что нужно знать для того, чтобы узнать, во сколько раз 1 кг конфет дороже, чем 1 кг печенья? Можно ли из условия задачи узнать стоимость 1 кг печенья и 1 кг конфет? Форма вопросов 3-го варианта носит проблемный характер, требует от учащихся максимума активизации мыслительной деятельности для решения задачи. Постановка таких вопросов возможна только в том случае, если школьники имеют уже опыт решения задач, если в достаточной мере сформирован обобщенный способ их решения.
Но на определенном этапе обучения для многих учащихся школы VIII вида решение задачи возможно лишь при использовании системы вопросов 1-го варианта.
Однако постепенно учитель должен вести учащихся от системы вопросов в 1-м варианте к системе вопросов в 3-м, развивая самостоятельность и активность учащихся.
Вопросы, которые ставит учитель в беседе, должны быть тща тельно продуманы заранее. Необходимо соблюдать их логическую последовательность. Они должны быть сформулированы четко, кратко, доступны по содержанию, учитывать запас знаний и жиз ненныи опыт учащихся. Недопустимы в условиях коррекционной школы сдвоенные вопросы. Они не помогают учащимся усваивать знания, сосредоточиться, а наоборот, рассеивают их внимание (Как образуется число 6 и из каких чисел оно состоит?)
Вопросы не должны заключать в себе ответа. (Все ли стороны в прямоугольнике равны или только противоположные?) Ответы на такие вопросы учащиеся дают наугад, не думая, не рассуждая
Следует избегать и неопределенных вопросов. (К каким фигу рам относится квадрат?)
Организуя фронтальную работу с классом, следует учитывать индивидуальные возможности каждого ребенка. К ответу на более простые вопросы следует привлекать наиболее слабых учащихся.
При сообщении новых знаний, пользуясь методом изложения знаний или методом беседы, учитель широко использует наблюде ния учащихся, дидактического материала, арифметических записей и т. д.
В отдельных случаях на уроках математики сами наблюдения могут служить ведущим методом в сочетании с методом изложе ния знаний или беседы. Используя метод наблюдения, учитель так организует познавательную деятельность учащихся, что им становится доступным самостоятельно сделать обобщения, выво ды. Например, учащимся 4-го класса на основе наблюдений доступно сделать вывод об умножении числа на 10. Учитель записывает столбик примеров на умножение на 10 и просит решить их, заменив умножение сложением:
4 * 10=4+4+4+4+4+4+4+4+4+4=40 4 * 10=40
7*10=7+7+7+7+7+7+7+7+7+7=70 7*10=70
6*10=6+6+6+6+6+6+6+6+6+6=60 6*10=60
После решения примера учитель просит сравнить множитель 4 и произведение 40. Какое число умножали? Какое число получили после умножения на 10? Какую цифру приписали справа к первому множителю? Аналогично сравниваются множитель и произведение остальных числовых выражений. Учащиеся подводятся к выводу: «При умножении на 10 произведение можно получить из первого множителя. если к нему приписать один нуль справа». Обобщение учащиеся сделали на основе наблюдения умножения однозначного числа на 10. Учитель подтверждает, что этот вывод справедлив
для умножения любого числа на 10. Метод наблюдения в сочетании с предметно-практической деятельностью самих учащихся широко используется и при изучении геометрического материала. Например, при знакомстве со свойствами углов и сторон прямоугольника (3-й класс) учитель использует такой способ: раздает каждому ученику по 2—3 модели этой фигуры разных размеров, просит измерить углы и стороны и записать результаты измерений. Когда практическая работа закончена, он спрашивает, что ученики могут сказать об углах своих прямо-угольников. Ученики подмечают, что во всех прямоугольниках все углы прямые. Самостоятельно формулируют правило: «У прямоугольника все углы прямые». Аналогично учащиеся подводятся к самостоятельному выводу о свойствах сторон прямоугольника. Объектами наблюдений могут служить предметные совокупности, числа, арифметические записи, фигуры, таблицы, единицы измерения мер и др. Учитель направляет и организует наблюдения учащихся. Под его руководством учащиеся вычленяют, подчеркивают тот существенный признак, который они должны распознать, увидеть. Можно выделить этот признак на наблюдаемом объекте цветом. Например, чтобы выделить поместное значение цифр в числe, единицы в числе записываются одним цветом, а десятки другим или подчеркиваются карандашами разного цвета и т. д. Во всех видах заданий независимо от используемого метода надо стремиться к тому, чтобы учащиеся могли отличать сущест-венные признаки фигуры, действия, явления от несущественных, А для этого требуется варьирование несущественных признаков в объектах для наблюдений, в заданиях, упражнениях и т. д. Это играет огромную корригирующую роль, так как известно, что ум-ственно отсталые учащиеся с трудом дифференцируют существенные и несущественные стороны формируемого понятия. Только многократные наблюдения, задания учителя, направляющие внимание школьников на то, что при изменении несущественных признаков существенные остаются неизменными, помогают учащимся сформировать понятия.
При ознакомлении с новым материалом в условиях школы VIII вида, особенно в старших классах, используется метод рабо-ты с учебником.
Однако надо помнить, что этот метод «добывания» новых знаний может быть использован не всеми учащимися. Для первоначального ознакомления с новой темой учащимся, которые могут самостоятельно разобраться в тексте учебника, предлагается тщательно отобранный учителем необходимый материал. Чтобы усвоить ту же тему, более слабые учащиеся слушают объяснение учителя или более сильного ученика, источником знания для которых служил учебник.
Предъявлять учащимся учебник целесообразнее всего при оз накомлении с новым случаем выполнения арифметического дейст вия, который является более сложным по сравнению с ранее изученным. Например, после изучения сложения многозначных чисел с переходом через разряд в одном разряде учащимся можно предоставить возможность разобраться по учебнику в рассмотре нии случаев сложения с переходом через разряд в двух (или даже трех) разрядах. Учащиеся должны показать, какой существенный признак отличает эти вычисления от рассматривавшихся ранее.
Естественно, что этот метод можно применять лишь тогда, когда в учебнике материал изложен достаточно подробно, с пра вильно подобранными примерами-образцами.
Метод работы с учебником тесно связан с методом самостоя тельной работы.
Вопрос об использовании метода самостоятельной работы как источника знаний в условиях коррекционной школы являлся дол гое время дискуссионным. Бытовало мнение, что умственно отста лые учащиеся не могут самостоятельно «добывать» знания. Одна ко опыт работы лучших учителей коррекционной школы показыва ет, что некоторые учащиеся в определенных условиях могут само стоятельно разобраться в новом материале.
Если учитель расчленяет материал на небольшие порции, то усвоение какой-то промежуточной порции возможно и при само стоятельной работе умственно отсталых школьников. Например, в 6-м классе после знакомства со сложением смешанного числа с дробью можно дать учащимся разобрать самостоятельно сложение
смешанного числа со смешанным (11/3+21/3). Но следует иметь в виду, что некоторым учащимся будет необходим образец для выполнения действия ( 11/3+21/3=31+1/3=32/3). Разобравшись в решении такого примера самостоятельно, они, осмыслив его, смогут перенести свои знания на решение аналогичных примеров. Другим учащимся доступно выполнение действий без образца — они в состоянии использовать свой прошлый опыт и имеющиеся знания.
Процесс формирования знаний не ограничивается их сообщением учащимся. Знания необходимо закрепить, раскрыть их новые стороны, привести в систему, научить учащихся использовать их для решения практических задач, формировать практические умения
Достижению этих целей служит использование целого ряда методов, в том числе и некоторых из тех, которые применялись при сообщении новых знаний (метод беседы, метод самостоятель-
ных работ, метод работы с учебником). Метод беседы чаще всего используется для закрепления теоретических знаний (свойства геометрических фигур, правил, законов арифметических действий и т. д.). Метод самостоятельных и практических работ используется для закрепления умений и навыков. Самостоятельная работа в процессе закрепления математических знаний может быть организована по-разному. В одних случаях она требует от учащихся использования лишь репродуктивной (воспроизводящей) деятельности. Например, при закреплении и повторении табличных случаев сложения и вычитания в пределах 10 и 20, таблицы умножения и деления, системы соотношения единиц мер и др. В других — в самостоятельную работу входят задания, упражнения, активизирующие мысль, связанные с применением знаний в сходной ситуации (нахождение значения числового выражения, аналогичного тому, на котором происходило знакомство с выполнением действия, решение аналогичных задач и др.). Наконец, в самостоятельной работе от учащихся может потребоваться использование продуктивной творческой деятельности (применение знаний в новой ситуации, решение новых задач).
Закрепление и повторение математических знаний невозможны без упражнений.
Упражнения используются для формирования навыков счета, вычислительных умений и навыков, умений решать задачи и т' д. Упражнения должны использоваться в определенной системе, с нарастающей степенью трудности. Например, при закреплении таблицы умножения числа 3 сначала даются примеры в одно действие (3*2, 3*4) и примеры на замену сложения одинаковых слогаемых умножением, решаются примеры с «форточками» вида 3* [ ] = 12, а затем действие умножения включается в решение пых примеров вида 3*8—20 и т. д.
Система упражнений должна быть подобрана так, чтобы новые знания связывались с уже имеющимися, способствовали их расширению и углублению. Например, подбирая упражнения на закрепление действий с десятичными дробями, учитель включает и действия над целыми числами, составляет сложные примеры с целыми и дробными числами (3,75+75+0,25+25), подчеркивает общность приемов выполнения действий над этими числами и общность законов (в данном случае переместительного и сочетательного).
Степень трудности должна определяться не только сложностью задания, но и индивидуальными возможностями учащихся.
Количество и разнообразие упражнений должно также опреде ляться индивидуально для каждого ребенка, но быть достаточно большим. Это необходимо для формирования у учащихся прочных навыков. Упражнения должны быть посильны учащимся. Именно во время самостоятельной работы можно успешно реализовать принцип дифференцированного подхода — учащиеся получают варианты заданий с учетом их способностей, потенциальных возможностей, темпа работы и т. д.
Учитель найдет в учебнике задания разной степени трудности и поэтому сможет дифференцированно подойти к учащимся при организации их самостоятельной работы в зависимости от возможностей и состояния их знаний по математике.
Дифференциации знаний учащихся способствуют упражнения на сопоставление или противопоставление сходных и контрастных понятий, действий. Поэтому в упражнениях полезны задания такого содержания (вычислить и сравнить решение):
7+2= 9-2= 2*4= 3*4= 12:4 =
2+7= 9-7= 4*2= 4*3= 12:3 =
Первые упражнения на закрепление того или иного действия, приема, решения задачи выполняются под руководством учителя. В дальнейшем упражнения выполняются самостоятельно, с последующим контролем, который выполняет сам ученик, проверяя выполнение действия обратным или тем же действием, проверяя задачи и др. Таким образом, в процессе выполнения упражнений формируются навыки самоконтроля, имеющие жизненно-практическое значение.
Упражнения должны развивать инициативу, творчество уча щихся. С этой целью подбираются такие упражнения, которые требуют от учащихся выбора наиболее рационального пути решения, выполнения того или иного действия. Например, решая пример вида 250+126+34+350, учащиеся должны использовать переместительное и сочетательное свойства сложения, а решая пример вида 199+75 — прием округления. Кроме того, они должны самостоятельно составить пример или задачу данного вида.
Упражнения должны быть тесно связаны с жизнью, с практической деятельностью учащихся в мастерских. Например, закрепляя знания по нумерации, учитель для анализа приводит примеры чисел, обогащающих знания учащихся об окружающей их действительности (численность населения крупных городов, протяженность границ, площади морей и т. д.).
Самостоятельная работа в классе — это подготовка и к выполнению домашнего задания. Успешность ее выполнения является, как правило, показателем того, насколько учащиеся подготовлены к самостоятельному выполнению домашних заданий.
Практические работы — это, как правило, ручная деятельность учащихся с раздаточным дидактическим материалом, измерения, лепка, аппликация, рисование, конструирование. Практические работы находят широкое применение при закреплении умений и формировании навыков измерений различными инструментами, черчении, конструировании и т. д.
Практические работы требуют от учителя тщательного руководства, большой работы по предупреждению возможных ошибок или выработки неправильного навыка. Практическая работа должна обеспечить максимум самостоятельности, инициативы, умения проконтролировать свою практическую деятельность. Полезно организовать взаимопроверку, контрольные измерения и т. д.
В специальной школе VIII вида на уроках математики широкое применение находят дидактические игры.
Известно, что если ребенок заинтересован работой, положительно эмоционально настроен, то эффективность занятий заметно возрастает. Выработка любых умений и навыков у умственно от-сталых школьников требует не только больших усилий, длительного времени, но и однотипных упражнений. Дидактические игры позволяют однообразный материал сделать интересным для учащихся, придать ему занимательную форму. Положительные эмоции, возникающие во время игры, активизируют деятельность ре-бенка, развивают его произвольное внимание, память. В игре ребенок незаметно для себя выполняет большое число арифметических действий, тренируется в счете, решает задачи, обогащает свои пространственные, количественные и временные представления, выполняет анализ и сравнение чисел, геометрических фигур. Дидактические игры, созданные специально в обучающих целях, способствуют и общему развитию ребенка, расширению его кругозора, обогащению словаря, развитию речи, учат использовать математические знания в измененных условиях, в новой ситуации. Все это свидетельствует о большом корригирующем значении дидактических игр.
На уроках математики в школе VIII вида дидактические игры находят широкое применение при закреплении любой темы. Создано большое количество игр, развивающих количественные, пространственные, временные представления и представления о размерах предметов. Хорошо известны игры «Веселый счет», «Живые цифры», «Арифметическое лото» (домино), «Круговые примеры», «Лесенка», «Молчанка», «Магазин» и др.1.
Поиски путей повышения эффективности учебного процесса привели к использованию элементов программированного обучения.
Опыт использования элементов программированного обучения в процессе преподавания математики показал, что целесообразнее использовать его при закреплении знаний и особенно при выработке вычислительных навыков, решении задач и т. д.
Программированные задания, которые уже нашли место на уроках математики, составляются таким образом, чтобы ученик, выполняя задание самостоятельно, находил ответ, сравнивал его либо с группой данных ему ответов, среди которых есть и ответ к данному заданию, либо с показаниями приборов. Если задание выполнено неверно, т.е. если ответ задания не совпадает с одним из данных ответов или не подкрепляется положительным сигналом, то ученик снова предпринимает попытку его решить и делает это до тех пор, пока не получит правильного ответа. Учитель выявляет причину ошибочного ответа и оказывает помощь ученику.
Формы подкрепления правильности решения примеров и задач могут быть самыми разнообразными. Приведем примеры некоторых из них.
См.: Перова М. Н. Дидактические игры и упражнения по математике. — М., 1997.
Дан столбик примеров: Ответы: ШифР:
375+586 276 1
1 000- 477 523 2
840*20 790 3
1 380 : 5 961 4
780+40 : 4 16800 5
Учащиеся, кроме задания решить примеры, получают ответы с указанием шифра. Ответы располагаются от меньшего числа к большему (или наоборот).
Ученик, решив первый пример, сверяет ответ с данными ответами. Найдя, он пишет ответ, а на полях против решенного примера ставит шифр. Если ученик ошибся, то он не найдет ответа, ему снова придется решать пример до тех пор, пока он не решит его правильно. Так, решив первый пример, ученик получает ответ 961, а шифр 4 пишет на полях тетради. Учителю легко по шифрам проверить правильность выполнения задания. Таким же образом зашифровываются и промежуточные результаты в задачах.
Есть и другая форма контроля примеров. На карточке записываются программированное задание и несколько возможных ответов к нему. Например, 24,05*10=? Возможные ответы: 24,050; 24,0510; 240,5; 240,50. Учащийся должен выбрать правильный из всех возможных ответов. Эта форма контроля требует вмешательства со стороны учителя в случае неверного выполнения задания, так как здесь нет немедленного подкрепления правильности выполнения задания. Недостаток этой формы контроля — возможность не решения, а угадывания ответа.
Наблюдения показывают, что учащиеся с большим интересом относятся к программированным заданиям, проявляют при их выполнении максимум самостоятельности. Каждый ученик работает I доступном ему темпе. Не нужно отводить специального времени на проверку самостоятельной работы, следовательно, экономится время и ученика, и учителя. Этот метод позволяет быстро выявлять затруднения учащихся при выполнении заданий и оказывать им необходимую помощь.
Психологические исследования и наблюдения за процессом ус-воения знаний учащимися показывают, что новые понятия лучше усваиваются и дифференцируются учащимися, если они изучают-ся в сопоставлении или противопоставлении. А сходных и проти-воположных понятий в математике очень много. Например, проти-
воположные понятия: больше — меньше, увеличить — уменьшить, сложение — вычитание и т. д.; сходные понятия: увеличение числа на несколько единиц, увеличение числа в несколько раз (то же для уменьшения числа), деление на равные части и деление по содержанию и т. д. Поэтому особое значение на уроках математики приобретает прием сравнения.
При использовании сравнения имеется возможность выделить существенные признаки одного понятия и сравнить их с существенными признаками другого, подчеркивая черты сходства и различия. Например, необходимо сравнить две задачи на увеличение числа на несколько единиц и на увеличение числа в несколько раз. Чтобы учащиеся смогли уяснить существенные признаки каждой из этих задач, учитель подбирает задачи с одинаковой фабулой, одинаковыми числовыми данными.
Задача 1. В первой коробке 6 карандашей, а во второй — в 2 раза больше. Сколько карандашей во второй коробке?
Задача 2. В первой коробке 6 карандашей, а во второй — на 2 карандаша больше. Сколько карандашей во второй коробке?
Решается сначала каждая задача отдельно. Учитель ставит вопрос: «Почему первая задача решается действием умножения, а вторая — действием сложения?» Затем сравниваются фабулы задач. Выясняется сходство и различие: «О чем первая задача? О чем вторая задача? Сколько было коробок с карандашами в первой задаче? То же во второй задаче. В этом сходство или различие двух задач? Сколько карандашей было в первой коробке (первая задача)? То же во второй задаче. В этом сходство или различие двух задач? Что сказано о карандашах во второй коробке в первой задаче? То же во второй задаче. В этом сходство или различие двух задач? Что нужно узнать в первой задаче? Что нужно узнать во второй задаче? Различны или сходны вопросы этих задач? Так чем же различаются эти две задачи?» В первой задаче сказано, что карандашей во второй коробке в 2 раза больше, чем в первой. Во второй задаче сказано, что карандашей во второй коробке на 2 больше, чем в первой. Поэтому первая задача решается действием умножения, а вторая — действием сложения.
Другой пример: «Сравнить два числовых выражения:
(37+13) *2=100 и 37+13*2=63. Выполнить действия. Объяснить, почему получились разные ответы».
Сравнение требует от учащихся постоянного сопоставления фактов, их анализа и, следовательно, активной мыслительной деятельности.
Как сказано выше, учащиеся нередко производят сравнение по несопоставимым признакам, с трудом устанавливают черты сходства и различия. Поэтому учеников необходимо учить сравнивать. На первых порах учитель направляет процесс сравнения своими вопросами. Сначала он ставит много вопросов, направленных на лучшее понимание содержания задач, постепенно число их сокращается. Полезно разобрать определенные схемы (алгоритмические предписания) сравнения чисел, величин, геометрических фигур, задач. Например, нужно сравнить два числа: 375 и 375 000. Учитель вывешивает таблицу: «Прочитай первое число. Прочитай второе число. Сколько цифр в первом числе? Как называется такое число? Сколько цифр во втором числе? Как оно называется? Сколько классов в первом числе? Сколько классов во втором числе? Как называются эти классы? Сколько разрядов в первом числе? Сколько разрядов во втором числе? Какими цифрами записано первое число? Какими цифрами записано второе число? Четное или нечетное первое (второе) число? В чем различие этих чисел? В чем сходство этих чисел?»
Постепенно учитель сокращает число вопросов: «Прочитай числа. Обрати внимание на их запись. Сколько знаков в каждом числе? Сколько классов и разрядов в каждом числе? В чем различие этих чисел? В чем их сходство?»
Схема — алгоритм сравнения чисел (для 6—7-х классов)
Название числа в зависимости от количества знаков
|
Количество классов и их названия
|
Количество разрядов и их названия
|
Число четное или нечетное
|
1-е число
|
|
|
|
2-е число
|
|
|
|
В специальной (коррекционной) школе VIII вида, как показывает анализ педагогического опыта, при обучении математике чаще вceгo используется индуктивный путь познания. Этот путь познания больше ориентирован на особенности развития мышления умственно отсталых учащихся. Поэтому многие математические понятия, свойства геометрических фигур, математические операции, свойства отношений изучаются опытным путем. Происходит
обращение к конкретным операциям с предметными совокупностями при формировании знаний о числе и арифметических действиях, использование моделей фигур и чертежей при изучении свойств фигур, обращение к краткой форме записи содержания задач, схеме, чертежу и пр.
Опытная проверка, наблюдение, постепенное обобщение частных случаев оказываются более понятными для умственно отсталых учащихся. Такой путь познания позволяет связать преподавание математики с жизнью, новые знания с ранее усвоенными и обеспечить как условия сознательного их усвоения, так и оптимальный вариант социальной адаптации школьников.
При индуктивном пути познания лучше осознаются связи между математическими абстракциями и предметами (явлениями) окружающего мира, между новыми знаниями и теми, которые уже известны.
Использование индукции в конкретной деятельности важно для активизации обучения математике, для развития творческой самостоятельности школьников. Важно вести учащихся от рассмотрения частных конкретных случаев к обобщениям, к использованию аналогий, учить мыслить обратимо и т. д.
При формировании математических знаний, особенно в старших классах, необходимо использовать не только индуктивный, но и дедуктивный путь, а также их сочетание. Дедуктивный метод ознакомления с новыми понятиями позволяет компактно формировать у учащихся умение использовать полученные знания на практике.
На всех этапах процесса обучения математике необходимо широко использовать предметно-практическую деятельность учащихся. При этом учитывается накопление школьниками не только математических знаний, но и навыков учебной деятельности. В младших классах при ознакомлении с новым материалом ученики включаются в предметно-практическую деятельность под руководством учителя, в старших классах — самостоятельно.
Важно создавать игровые и жизненные ситуации, в которых школьники учатся использовать полученные математические знания в вычислениях, измерениях, черчении для решения практических задач.
Выбор методов обучения, как отмечено выше, обусловливается целым рядом факторов. Выбор методов на определенном этапе урока зависит от целей, которые решаются на этом этапе. Например, если на данном этапе ставится цель познакомить учащихся с алгоритмом письменного умножения, то в качестве метода обучения целесообразно выбирать изложение знаний. В данном случае неправомерно использовать беседу, так как учащиеся не располагают прошлым опытом, на который можно было бы опираться; нецелесообразно использовать и работу с учебником, так как большинство учащихся не сможет вычленить главного, существенного при знакомстве с новым алгоритмом. Кроме того, школьники должны получить образец стройного последовательного изложения алгоритма умножения, наблюдать правильную запись этого действия в столбик.
Выбор методов определяется содержанием учебного материала. Например, если на уроке решается задача, то, как правило, ее решение осуществляется с помощью беседы, катехизической или эвристической.
Если идет закрепление табличных случаев сложения или вычи-тания, таблицы умножения или деления, то выбирается метод самостоятельной работы, подбираются упражнения, которые бы требовали воспроизведения в памяти табличных случаев (опора на репродуктивную деятельность).
Если предполагается ознакомление учащихся с новым материалом, например с получением нового числа первого десятка, то целесообразно использовать их прошлый опыт, умение применить имеющиеся знания в новой ситуации. В этом случае выбирается метод эвристической беседы и вопросы ставятся так, чтобы акти-визировать продуктивную деятельность учащихся.
Если на уроке требуется познакомить учащихся с единицей измерения массы — килограммом и взвешиванием на чашечных весах, то обычно выбирается метод беседы в сочетании с методом самостоятельной практической работы, а также наглядный метод
обучения — метод демонстрации.
Выбор методов определяется и средствами обучения. Например, на одном из этапов урока во 2-м классе ставится цель повторить с учащимися геометрические фигуры (круг, квадрат, треугольник, прямоугольник), которые учащиеся учились узнавать и называть еще в 1-м классе. Если учитель располагает моделями геометрических фигур, то может организовать на уроке практическую работу: обводку, моделирование сложных фигур, дидактические игры. Если в качестве средств наглядности используются чертежи фигур, то целесообразнее при сообщении новых знаний применить методы демонстрации, наблюдения. Если имеется диафильм, соответствующий теме урока, то надо воспользоваться при объяснении демонстрацией фильма и беседой по его содержанию.
Итак, выбор методов определяется конкретными условиями обучения. Но какой бы метод или их сочетание ни использовал учитель на уроках математики, он должен учитывать психофизические особенности учащихся, доступность для них учебного материала, наличие наглядных и технических средств обучения. Весь имеющийся в распоряжении учителя арсенал должен быть направлен на активизацию познавательной деятельности учащихся, на их воспитание и развитие, максимальное ослабление и преодоление дефектов мыслительной и эмоционально-волевой деятельности учащихся.
Учитель должен овладеть методическим мастерством, постоянно совершенствовать эффективность процесса обучения математике.
В данной главе мы раскрыли особенности использования общих методов обучения математике в коррекционной школе.
Специфические методы и приемы обучения математике, например методы и приемы формирования вычислительных навыков, решения арифметических задач, будут рассматриваться во второй части учебника при изложении методики изучения соответствующих тем математики.
Методика формирования вычислительных навыков в специальных
коррекционных школах
На изучение математики в учебном плане специальной школы отводится большая
|
|
|