Основными компонентами руд, имеющими промышленную ценность, являются Fe, P2O5 и ZrO2; важное значение для обогащения руд имеет также CO2. Вредные примеси – U и Th , а также MgO, S и TiO2.
1.3 Добыча полезного ископаемого
Добыча и изучение полезных ископаемых Ковдорского месторождения производится в соответствии с лицензиями на право пользования недрами.
Горно-транспортный цикл является головным в составе основной технологии предприятия. Его предназначение и задача – разработка месторождений полезных ископаемых с целью добычи исходного рудного сырья, подготовка рудного сырья с заданными параметрами качества (шихтовка) и подача на последующие переделы (дробление и обогащение).
Основные объекты горных работ на комбинате:
-карьер по добыче комплексных бадделеит-апатит-магнетитовых руд;
-карьер по добыче лежалых отходов обогащения (хвостов), содержащих апатит и бадделеит.
Технологический процесс горно-транспортного цикла основной технологии ведут следующие подразделения комбината:
-рудник "Железный", численность работников 703 чел.;
-цех технологического транспорта (ЦТТ), численность работников 613 чел.;
-цех горно-дорожных и строительных машин (ЦГДиСМ), численность работников 175 чел.
Для основного производства устанавливается следующий режим работы: на добыче руды и на производстве вскрышных работ – 365 рабочих дней в 3 смены с продолжительностью одной смены 8 часов; для вспомогательного производства предусматривается несколько режимов: 365 дней в 3 смены по 8 часов, 301 день в 3 (или 2) смены по 8 часов, 249 дней в 1 смену по 8 часов и др.
1. 3.1 Способ добычи полезного ископаемого и система разработки
Способ разработки – открытые горные работы. Система разработки с углубкой карьера горизонтальными уступами, отработка уступов круговыми заходками, направление перемещения фронта работ многостороннее, отвалообразование внешнее с автомобильной и конвейерной транспортировкой вскрыши. В таблице 1.3 приведены параметры карьера.
Таблица 1.3 Основные параметры карьера
Наименование
|
Ед. измерения
|
Показатель
|
Производственная мощность по руде
Возможная максимальная производительность
Глубина карьера
по утвержденному проекту по
замкнутому контуру
на длительную перспективу
Периметр карьера
Длина карьера (север – юг)
Ширина карьера (запад – восток)
Ширина рабочих площадок
Высота рабочих уступов
до гор.+70 м
ниже гор.+70 м
Высота подъема груза (горной массы) автотранспортом за 9 мес.
по руде
по вскрыше
по горной массе
Протяженность автомобильных дорог, в том числе:
карьерные дороги
дороги на отвалах
Руководящий уклон
|
млн. т/год
млн. т/год
м
м
м
м
м
м
м
м
м
м
м
км
км
км
|
10
12,4
364
650–700
6216
2350
1680
26–30
12
15
174
244,8
222,9
44,8
25,4
19,4
0,06
не более 0,08
|
Процесс добычи и подготовки рудной шихты состоит из следующих последовательных, тесно связанных между собой и взаимозависимых технологий: а) буровые работы: бурение взрывных скважин осуществляется станками шарошечного бурения типа СБШ-250 МН с диаметрами породоразрушающего инструмента 244,5 и 250,8 мм.
Обуривание блоков производится в соответствии с планом горных работ попроектам, которые составляются работниками рудника «Железный» (маркшейдерской, геологической службами, ИТР бурового участка) и утверждаются зам. главного инженера по БВР.
Объемы и места бурения взрывных скважин определяются планами горных работ, исходя из необходимости своевременной подготовки запасов отбитой руды и вскрыши, ширины рабочих площадок.
Основными факторами, влияющими на производительность буровых станков, а также выбор оптимальных режимов бурения, типов и диаметров шарошечных долот являются высокая изменчивость физико-механических свойств (коэффициент крепости по Протодьяконову колеблется от 4-8 до 15-20), обводненность, абразивность, степень трещиноватости горных пород.
Организация буровых работ обеспечивается таким образом, чтобы выполнять своевременную сдачу части или всего блока под зарядку путем последовательного бурения скважин от первого ряда к последующему и от одного фланга блока к другому;
б) взрывные работы: специфика ведения взрывных работ на АО «Ковдорский ГОК» при подготовке горной массы к экскавации обусловлена сложными горно-геологическими условиями в карьере с одной стороны и близостью зданий и сооружений промплощадки и города с другой стороны.
Cложность горно-геологических условий обуславливается высокой обводнённостью месторождения (водоприток в карьер составляет 1500-2000 м³ воды в час) и высокой степенью перемежаемости руд и пород, различных по минеральному составу, крепости и трещиноватости с преобладанием трудно- и весьма трудновзрываемых пород и руд. Особые условия на производство взрывных работ накладывает близость зданий и сооружений промплощадки комбината (ТЭЦ, корпуса крупного и мелкого дробления дробильной фабрики), расположенные в карьере дробильно-перегрузочные узлы ЦПТ руды и вскрыши, стационарная станция главного водоотлива, проходческие станции водоотлива, ЛЭП глубоких вводов.
Всё вышеперечисленное предъявляет весьма жесткие требования к производству взрывов в карьере: при необходимости обеспечения высокого качества дробления горной массы, воздействие сейсмики и УВВ на здания и сооружения промплощадки и города должно быть минимальным.
При подготовке горной массы на руднике "Железный" применяется взрывная отбойка методом скважинных зарядов.
В настоящее время применяется отвечающая мировым стандартам технология производства массовых взрывов эмульсионными взрывчатыми веществами (ЭВВ) с системой инициирования скважинных зарядов «Нонель» (Дино Нобель). Приготовление компонентов ЭВВ, их доставка на взрываемые блоки смесительно-зарядными машинами (СЗМ) «Трейдстар» и размещение ЭВВ в скважины осуществляются сторонней организацией – филиалом фирмы ИМС, учрежденной в России совместно норвежской компанией Норск Гидро и американской – МСАЙ.
Для заряжания скважин применяются взрывчатые вещества (ВВ), допущенные к применению на открытых горных работах:
для заряжания сухих скважин - граммонит 79/21 заводского изготовления и эмульсионное ВВ - эмулит ВЭТ 300;
для заряжания обводненных скважин - гранулотол и эмульсионное ВВ - эмулит ВЭТ 700.
Эмулиты марок ВЭТ представляют собой механическую смесь эмульсии «ВЭТ 70С», гранулированной аммиачной селитры, дизельного топлива и газогенерирующей добавки (ГГД) и изготовляются на местах применения в процессе заряжания скважин смесительно-зарядной машиной (СЗМ) «Трейдстар».
СЗМ «Трейдстар» предназначена для раздельного транспортирования к местам производства взрывных работ невзрывчатых компонентов и изготовления, в процессе зарядки скважин, эмульсионных взрывчатых веществ эмулитов марок ВЭТ.
Эмульсия «ВЭТ 70С» и ГГД изготавливаются на стационарном пункте изготовления (СПИ) Ковдорского филиала ООО «ИМС». На СПИ производится также заправка СЗМ компонентами ЭВВ: эмульсией, ГГД, аммиачной селитрой и дизельным топливом.
Параметры взрывных работ установлены Технологической инструкцией "Организация и ведение взрывных работ на руднике "Железный" и дополнениями №1и №3 к этой инструкции.
Технологию и организацию ведения взрывных работ устанавливает инструкция и является основным регламентирующим документом для всех подразделений рудника «Железный», а также других цехов предприятия и сторонних организаций, связанных с подготовкой и проведением взрывных работ. Она разработана в связи с коренной модернизацией взрывных работ на комбинате: использованием при ведении ВР эмульсионных взрывчатых веществ (ЭВВ) и полного комплекта низкоэнергетической системы инициирования «Нонель».
Технология и организация взрывных работ на «АО Ковдорский ГОК» установлена с использованием взрывчатых веществ – эмулитов марки ВЭТ на основании технологической инструкции (ТИ 182-Р-01-94). Эмулиты марки ВЭТ представляют собой механическую смесь эмульсии «ВЭТ 70С», гранулированной аммиачной селитры, дизельного топлива и газогенерирующей добавки.
Эмулиты марки ВЭТ предназначены для производства взрывных работ при отбойке сухих и обводненных горных пород методом скважинных зарядов в температурном диапазоне окружающей среды от –50 до +50С. Для раздельного транспортирования к местам производства взрывных работ невзрывчатых компонентов и изготовления, в процессе зарядки скважин , эмульсионных взрывчатых веществ эмулитов марки ВЭТ, предназначена смесительно-зарядная машина «Трейдстар».
Производительность заряжания скважин, в зависимости от их обводненности и способа подачи ВВ в скважину , составляет :
для сухих скважин или сухой части обводненных скважин при подачи шнеком –450 кг/мин для эмулитов марки ВЭТ-300;
для полностью обводненных скважин при подаче ВВ насосом по шлангу под столб воды-230 кг/мин для змулитов марки ВЭТ-700 .
Для расчетов годового расхода ВВ применялся фактический удельный расход равный 1,374 кг/м3. При использовании эмулитов ВЭТ на карьере применяется конструкция скважинного заряда со сплошной колонкой заряда ВВ.
Проектом предусматривается многорядное короткозамедленное взрывание скважин. Массовые взрывы предусматривается производить один раз в неделю.
1.4 Требования к исходному сырью
1.4.1 Бадделеит-апатит-магнетитовые и маложелезистые апатитовые руды основного карьера
Содержание полезного компонента, ограничение по примесям и методы анализа регламентируются СТП 182 2-16.01-2001(с изм.№1). Регламентированные технические требования к руде указанны в таблице 1.4
Таблица 1.4 Технические требования к руде
Наименование показателей
|
Норма
|
Среднечасовая по
экспрессным измерениям
|
Среднесменная
|
1
|
2
|
3
|
1. Массовая доля железа общего, %
|
плановая ± отн. 10
|
|
2. Массовая доля железа в магнетите, %
|
-
|
не менее 65,2;
не более 66,2
|
1
|
2
|
3
|
3. Массовая доля пентоксида фосфора, %
|
-
|
плановая ± отн. 12
|
4. Массовая доля диоксида циркония, %
|
-
|
не менее 0,14;
не более 0,18
|
5. Карбонатность – массовая доля диоксида углерода (СО2), %
|
-
|
не менее 5;
не более 10
|
6. Радиоактивность – гамма-активность, мкр/час
|
не более 19
|
16,5±1,0
|
7. Размер отдельных наибольших кусков по ребру, мм, не более
|
1300
|
1300
|
Примечание:
в течение смены, но не более 2-х часов, допускаются среднечасовые колебания содержания железа общего в руде ±12 относит.%;
содержание железа в магнетите в месячной партии рудной шихты, поданной на переработку, определяется и планируется в соответствии с геологическими расчетами по плану горных работ в пределах 65,4-65,8%;
в связи с требованиями потребителей по ограничению содержания ТiО2 и МqО в концентрате железорудном и радиоактивности в порошке бадделеитовом, в нормы технических требований по п.п. 2,5,6, по представлению главного геолога и согласованию с техническим директором, могут оперативно вноситься временные изменения;
содержание диоксида циркония в месячной партии рудной шихты, поданной на переработку, определяется и планируется в соответствии с геологическими расчетами по плану горных работ в пределах 0,14-0,16%;
справочно: в процессе проведения добычных работ, в зависимости от складывающихся условий производства и отгрузки концентратов, месячная плановая норма массовых долей железа общего и пентоксида фосфора в рудной шихте может изменяться в пределах 23,5-25,0% и 6,7-7,2% соответственно.
Физические свойства руды:
- удельный вес - 3.7 т/м3
- насыпной вес - 2.0 т/м3
- крепость по шкале Протодьяконова - 8-10
Минеральный и химический составы руды представлены в таблицах 1.5 и 1.6 соответственно.
Таблица 1.5 Минеральный состав руды
Массовая доля минералов, %
|
Магнетит
|
Апатит
|
Форстерит
|
Кальцит
|
Доломит
|
Слюды
|
Пироксен
|
Серпентин
|
Бадделеит
|
34,1
|
16,2
|
22,8
|
11,3
|
5,1
|
5,2
|
2,1
|
1,6
|
<0,2
|
Таблица 1.6 Химический состав руды
Массовая доля компонентов, %
|
Feмaгн.
|
SiO2
|
MqO
|
CaO
|
Al2O3
|
TiO2
|
P2O5
|
S
|
ZrO2
|
CO2
|
CO2/P2O5
|
22,3
|
13,0
|
15,1
|
18,3
|
1,92
|
0,52
|
6,8
|
0,29
|
0,16
|
7,5
|
1,10
|
1.5 Требования к качеству готовой продукции
1.5.1 Требования к железорудному концентрату
Содержание полезного компонента, ограничение по примесям и методы анализа регламентированы ТУ 0712-002-00186759-2002 (с изменением №1).
Регламентированные технические требования к качеству железорудного концентрата указаны в таблице 1.7
Таблица 1.7 Технические требования к качеству железорудного концентрата
Наименование показателей
|
Нормы
|
Массовая доля железа общего, %
|
64,0+1,0
-0,5
|
Массовая доля фосфора, % не более
|
0,10
|
Массовая доля влаги:
Влажный концентрат, % не более
Высушенный концентрат, %
|
8,5
1,0±0,5
|
Примечание:
по согласованию в каждом конкретном случае с предприятиями-потребителями, в отдельных партиях (маршрутах) железорудного концентрата допускается превышение верхнего предела по содержанию железа;
по согласованию с предприятиями-потребителями допускается отгрузка смеси влажного и высушенного концентратов с массовой долей влаги по согласованию сторон;
срок перехода на отгрузку высушенного железорудного концентрата устанавливается 1 ноября, срок перехода на отгрузку влажного концентрата - 1 апреля.
Физико-химические свойства железорудного концентрата:
удельный вес - 4,7 т/м3
насыпной вес при содержании влаги 9.8% - 3,1 т/м3
угол естественного откоса при влажности 8% - 38,5°
при влажности 0,7% - 35,7°
Железорудный концентрат хорошо растворяется в кислотах, особенно в соляной и серной. Нерастворимое железо составляет 0,1%.
Минеральный и химический составы железорудного концентрата представлены в таблицах 1.8 и 1.9 соответственно.
Таблица 1.8 Минеральный состав железорудного концентрата
Массовая доля минералов, %
|
Магнетит
|
Апатит
|
Форстерит
|
Карбонаты
|
Слюды
|
Сульфиды
|
Прочие
|
97,6
|
0,2
|
1,2
|
0,3
|
0,1
|
0,6
|
Ед.зн.
|
Таблица 1.9 Химический состав железорудного концентрата
Массовая доля компонентов, %
|
Fe
|
SiO2
|
CaO
|
MqO
|
Al2O3
|
TiO2
|
Р
|
ZrO2
|
СоО
|
МnO
|
ZnO
|
NiO
|
V2O5
|
S
|
63,9
|
0,75
|
0,37
|
6,0
|
2,0
|
1,09
|
0,055
|
0,015
|
0,024
|
0,56
|
0,041
|
0,011
|
0,13
|
0,31
|
1.5.2 Апатитовый концентрат
Содержание полезного компонента, ограничение по примесям и методы анализа регламентированы ТУ 2111-001-00186759-99.
Регламентированные технические требования к качеству апатитового концентрата указаны в таблице 1.10
Таблица 1.10 Технические требования к качеству апатитового концентрата
-
Наименование показателя
|
Норма
|
КА-1
|
КА-2
|
1. Массовая доля пентоксида фосфора, %, не менее
|
38,0
|
37,0
|
2. Массовая доля оксида магния,
%, не более
|
2,3
|
3,5
|
3. Массовая доля воды, %
|
1,0±0,6
|
1,0±0,6
|
4. Остаток на сите с сеткой № 0,2
(ГОСТ 6613), %, не более
|
13,5
|
13,5
|
Примечание:
нормы по показателям подпунктов 1, 2 и 4 таблицы 4 даны в пересчете на сухой продукт;
допускается, по согласованию с потребителями, отгружать апатитовый концентрат с влагой менее 0,4%.
Физические свойства апатитового концентрата:
насыпной вес - 1,8-1,9 т/м3
удельный вес - 3,13 т/м3
угол естественного откоса - от 27 до 35°
Минеральный и химический составы апатитового концентрата представлены в таблицах 1.11 и 1.12 соответственно.
Таблица 1.11 Минеральный состав апатитового концентрата
|
Массовая доля минералов, %
|
Апатит
|
Форстерит
|
Кальцит
|
Доломит
|
Прочие
|
|
90,9
|
2,1
|
5,7
|
1,3
|
Ед.зн.
|
|
Таблица 1.12 Химический состав апатитового концентрата
Массовая доля компонентов, %
|
P2O5
|
SiO2
|
CaO
|
MgO
|
ZrO2
|
CO2
|
Fe2O3
|
F
|
S
|
38,2
|
0,98
|
53,9
|
1,6
|
0,025
|
3,2
|
0,28
|
1,00
|
0,01
|
1.5.3 Черновой бадделеитовый концентрат
Минеральный и химический составы чернового бадделеитового концентрата представлены в таблицах 1.13 и 1.14 соответственно.
Таблица 1.13 Минеральный состав чернового бадделеитового концентрата
Массовая доля минералов, %
|
Бадделеит
|
Рудные
минералы
|
Сульфиды
|
Апатит
|
Пироксены
|
Форстерит
|
Перовскит
|
Циркон
|
прочие
|
91,4
|
3,0
|
0,9
|
0,4
|
0,4
|
1,8
|
1,6
|
0,5
|
Ед.зн.
|
Таблица 1.14 Химический состав чернового бадделеитового концентрата
Массовая доля компонентов, %
|
ZrO2
|
Fe
|
SiО2
|
MgO
|
СаО
|
TiO2
|
Р2О5
|
S
|
Feмагн
|
91,2
|
2,2
|
1,00
|
1,09
|
0,96
|
1,92
|
0,22
|
0,39
|
0,2
|
1.5.4 Питание флотации
Минеральный и химический составы питания флотации представлены в таблицах 1.15 и 1.16 соответственно.
Таблица 1.15 Минеральный состав питания флотации
Массовая доля минералов, %
|
Магнетит
|
Апатит
|
Форстерит
|
Кальцит
|
Доломит
|
Слюды
|
Пироксены
|
Серпентины
|
Сульфиды
|
Бадделеит
|
прочие
|
1,1
|
24,9
|
33,8
|
17,2
|
7,5
|
7,9
|
3,4
|
2,5
|
0,6
|
0,3
|
0,8
|
Таблица 1.16 Химический состав питания флотации
Массовая доля компонентов, %
|
Feобщ
|
Feмагн
|
SiО2
|
СаО
|
MgO
|
Al2O3
|
TiO2
|
Р2O5
|
S
|
ZrO2
|
СO2
|
СаО/P2O5
|
3,5
|
0,9
|
20,6
|
27,9
|
20,7
|
1,90
|
0,18
|
10,6
|
0,24
|
0,24
|
11,0
|
1,04
|
1.6 Сведения о площадке строительства обогатительной фабрики
1.6.1 Климатические условия
Ковдорский район характеризуется умеренно континентальным климатом с относительно мягкой, но продолжительной зимой (с октября по апрель) и прохладным летом, которое длится 2-2,5 месяца. Среднемесячная температура воздуха по многолетним наблюдениям изменяется от +13,6оС в июле до -14,2оС в феврале, а среднегодовая температура равна -1,7оС. Район находится в зоне избыточного увлажнения и характеризуется значительным количеством осадков, составляющих в среднем 600мм в год. Снежный покров устанавливается к началу ноября, а исчезает к концу мая. Преобладающее направление ветра в районе - западное и юго-западное. Нелишне отметить, что с начала декабря до середины января здесь стоит полярная ночь, - не такая темная, как на крайнем севере, но солнце над горизонтом все же не показывается, а только окрашивает южную часть неба в красный цвет разнообразных оттенков. И, наоборот, с конца мая до середины июля солнце за горизонт не заходит - стоит полярный день.
Одним из основных элементов климата, влияющим на режим поверхностных и подземных вод, является температура воздуха.
Среднегодовая температура воздуха за период с 1994 по 2010 г. изменялась от -2.1 С (1998 год) до +1.33 С (2010 год). Для района работ, в основном, характерны отрицательные значения среднегодовых температур воздуха. Самый теплый месяц года - июль, со среднемесячной температурой +11.8 - + 14.1 С, самые холодные месяцы - январь, февраль, со среднемесячной температурой -11.7 - -13.3 С. Переходным месяцем от зимнего периода является апрель, от осени к зиме - октябрь. Средняя продолжительность безморозного периода - 76 дней, наибольшая - 114. Преобладающее направление ветра в районе - западное и юго-западное. Доля штилевых дней в среднем за год составляет 25 %.
Как и вся Мурманская область, рассматриваемый район находится в зоне избыточного увлажнения и для него характерно значительное количество осадков - в среднем 600 мм в год. Многолетняя среднегодовая норма осадков по метеостанции «Ковдор» составляет 466 мм.
За период с 1994 по 2010 год наблюдаются значительные отклонения от этой нормы от 111 до 157 %. В годовом цикле осадки выпадают неравномерно: наибольшее количество осадков выпадает (более 2/3) в виде дождя в теплый период года. Среднее число дней с осадками - 196. Максимальное суточное количество осадков приходится на июль и изменяется от 11.2 мм до 19.6 мм. В зимнее время осадки выпадают, главным образом, в виде снега. Максимальная высота снежного покрова наблюдается в марте и достигает 80 см. Максимальный запас воды в снежном покрове в конце марта – начале апреля составляет 116 мм. Наибольшая средняя многолетняя глубина промерзания почвы на открытых местах 116-120 см (март). Появление устойчивого снежного покрова происходит к началу ноября, его сход - к концу мая.
Среднегодовая влажность (ГМС «Ковдор») составляет 83-85 %. Испарение выпавших осадков незначительное и не превышает 200-230 мм.
1.6.2 Рельеф и источники воды
Гидрографическая сеть рассматриваемой территории принадлежит бассейну Белого моря. Благодаря избыточному увлажнению, сильно расчлененному рельефу и глубокому врезу речных долин, существуют благоприятные условия для питания поверхностными водами рек, ручьев и других водоемов.
Рельеф района низкогорный и холмистый. Долины ручьев и рек сменяются высотами с пологими склонами. Очертания мезорельефа плавные. Относительные превышения обычно составляют не более 70 м. Непосредственно в районе Ковдорского массива картину рельефа можно охарактеризовать как депрессию, совмещенную с выходом на поверхность щелочных пород массива, окруженную кольцом возвышенностей, приходящихся на контактовые зоны массива. Абсолютные отметки вершин в кольцевой зоне достигают 450 м, что на 240 м выше уровня оз. Ковдоро.
Территория характеризуется достаточно густой и хорошо развитой речной сетью, принадлежащей бассейну Белого моря. Главной рекой района является р. Ена, которая в качестве левых притоков принимает реки Ковдора и Лейпи, протекающие непосредственно по территории деятельности ОАО «Ковдорский ГОК». Реки района имеют горный или полугорный характер, отличаются быстрым течением, достигающим на порожистых участках русел скорости 2-3 м/сек. Река Ена служит источником хозяйственно-питьевого водоснабжения г. Ковдор. На ее левом берегу в 1,2 км выше впадения р. Ковдоры оборудован водозабор, соединяющийся с городом водоводом длиной около 20 км.
Наиболее крупным озером района является оз. Ковдоро, представляющее озеровидное расширение реки Ковдоры и делящее ее на два отрезка, известные под названиями Верхняя Ковдора (участок выше озера) и Нижняя Ковдора (участок ниже озера). Длина озера в нынешнем состоянии (после осушения западной части) 2,5 км, ширина - от 50 до 400 м. Характерной особенностью озера является повсеместное развитие на его дне диатомитовых илов, достигающих мощности 15-17 м. Озеро служит источником технического водоснабжения КГОКа. Остальные озера района имеют незначительную площадь зеркала и приурочены, в основном, к понижениям рельефа.
Гидрогеологические условия эксплуатации месторождения апатит-штаффелитовых руд несложные, что подтверждается вскрытием этих руд в железорудном карьере. Коэффициенты фильтрации пород иизменяются от тысячной долей до первых метров в сутки. Рассчитанные максимальные водопритоки в карьер на конец его отработки (глубина 155 м) оцениваются величиной порядка 650 куб.м/час. По заключению ГКЗ, указанная величина может рассматриваться лишь как ориентировочная, т.к. к моменту началаотработки значительная часть статических запасов подземных вод будет сдренирована. До начала проектирования необходимо провести дополнительные гидро-геологические исследования по программе и в сроки, согласованные с проектирующей организацией, с целью уточнения гидрогеологических параметров, необходимых для надежного расчета водопритоков в будущий карьер.
Вопросы водоснабжения предприятия питьевой и технической водой решены. Осуществляется оно из водозабора на р. Ена.
Контроль качества подземных и поверхностных вод проводится с периодичностью: один раз в месяц в трёх точках наблюдений - пруд-отстойник оборотной воды, зумпф проходческого водоотлива у дамбы № 1 и гидропост руч. Можель; один раз в квартал - в скважинах расширенной опорной наблюдательной сети.
Анализ воды включает определение 26-ти показателей: прозрачность (см), рН, щёлочность общая (мг-экв/л), взвешенные вещества сухие (мг/л), взвешенные вещества прокалённые (мг/л), плотный остаток сухой (мг/л), плотный остаток прокалённый (мг/л), СО3 (мг/л), НСО3 (мг/л), азот аммонийный (мг/л), азот нитратный (мг/л), азот нитритный (мг/л), ХПК (мг/л), БПК5 (мг/л), БПК20 (мг/л), хлорид-ион (мг/л), сульфат-ион (мг/л), железо общее (мг/л), жёсткость общая (мг-экв/л), кальций-ион (мг/л), магний-ион (мг/л), фосфаты (мг/л), нефтепродукты (мг/л), СПАВ анионоакт. (мг/л), марганец-ион (мг/л).
Пробы воды регистрируются в соответствующих журналах и снабжаются этикетками с указанием места отбора, условий взятия пробы, фактических свойств воды в момент взятия пробы и т.д.
Методика выполнения гидрогеологических наблюдений и замеров, инструментарий их производства регламентируются «Инструкцией по гидрогеологическому и инженерно-геологическому обслуживанию горнодобывающих предприятий» (ВИОГЕМ, 1983) и другими нормативными документами.
1.6.3 Электроснабжение
Энергообеспечение объектов предприятия производится от систем «Колэнерго», тепловую энергию объекты основной промплощадки получают от теплоэлектроцентрали, включающую в себя непосредственно ТЭЦ и котельную. Теплоэлектроцентраль обеспечивает тепловой энергией весь город Ковдор.
Теплоэлектроцентраль работает на мазуте М-100. Годовой расход мазута в 1999 году составил 96380 т.
Продукты сгорания мазута - мазутная зола (в пересчете на ванадий), диоксид азота, диоксид серы, оксид углерода, банз(а)пирен поступают в атмосферный воздух через 2 дымовые трубы:
- 1-я высотой 100м и диаметром 5,1м;
- 2-я высотой 150м и диаметром 4,8м.
Электроснабжение потребителей проектируемого карьера рудника «Железный» АО «Ковдорский ГОК» предусмотрено от двух источников энергосистемы. Кроме этого на ГОКе имеется автономный источник ТЭЦ с турбогенераторами мощностью 2х4 МВт, который обеспечит электроэнергией особо ответственных потребителей при погашении электроснабжения от энергосистемы.
При длительном перерыве электроснабжения от энергосистемы, электроснабжение насосных водоотлива карьера должно производиться от ТЭЦ. Учитывая большую возрастающую концентрацию горных работ при углубке карьера, для исключения при взрывах повреждения кабелей 6 кВ, питающих насосные, их прокладка предусмотрена в стальных трубах диаметром 1000 мм.
На карьере не предусмотрены электроустановки с маслонаполненным оборудованием, что исключит возможность взрыва, пожара и загрязнения окружающей среды.
Для обеспечения безопасности персонала обслуживающего запроектированные электроустановки проектом предусматриваются:
- величины напряжения электроустановок приняты не выше значений, регламентированных ЕПБ и ПУЭ;
- режим заземления нейтрали сети 6 кВ принят с заземленной нейтралью через высокоомное сопротивление обеспечивающее снижение перенапряжений и селективную работу устройств релейной защиты;
- блокировки от ошибочных действий персонала при переключениях;
- сеть заземления карьера не связана с заземлением ПС 150/35/6 кВ и ПС 150/6 кВ;
- предупредительная и аварийная сигнализация на подстанциях;
- электрооборудование и аппаратура предусмотрены в исполнении отвечающим условиям окружающей среды;
- средства защиты персонала при работе в электроустановках;
- противопожарные средства.
2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Анализ работы предприятий, перерабатывающих аналогичное сырье
Основными направлениями развития народного хозяйства предусматривается дальнейшее повышение содержания железа в товарной железной руде главным образом за счет расширения и повышения эффективности обогащения магнетитовых руд. В настоящее время в широких масштабах обогащаются магнетитовые и гематитовые руды, в меньших - бурожелезняковые и сидеритовые. Содержание железа в магнетитовых рудах составляет 31 - 35 %, в гематитовых – 40-50 %, бурожелезняковых – 20 - 40 %, сидеритовых 28 - 33 %.
Магнетитовые руды представлены в основном рудным минералом магнетитом. Кроме магнетита в зонах выветривания имеются значительные содержания гематита, мартита и сидерита. Пустая порода представлена кварцем, полевыми шпатами, железистыми силикатами, карбонатами и др.
Наиболее широко распространенную группу магнетитовых руд составляют магнетитовые кварциты осадочно-метаморфического происхождения (район Курской магнитной аномалии, Оленегорское, Кировогорское и другие месторождения).
Вкрапленность и магнитная восприимчивость являются наиболее важными технологическими характеристиками магнетитовых кварцитов. Вкрапленность рудных минералов в магнетитовых кварцитах изменяется в широких пределах — от сплошной и крупнозернистой до пылевидной. Преобладающий размер вкрапленности в рудных слоях составляет 0,15 - 0,18 мм, в смешанных - 0,07 - 0,12 и в нерудных - 0,04 - 0,08 мм.
Технология обогащения магнетитовых кварцитов включает ряд последовательных операций: дробление, грохочение, измельчение, классификацию и магнитную сепарацию. В зависимости от применяемого метода измельчения магнетитовые кварциты подвергают дроблению до максимальной крупности 15-25 или 300мм. Дробление осуществляется по различным схемам: одно-, двух-, трехстадиальной с открытым или замкнутым циклами и четырехстадиальной с открытым циклом. Первичная переработка руды по всем схемам дробления производится в дробилках крупного дробления ККД-1500/180 с загрузочной щелью 200—220 или 170—180 мм. Среднее дробление магнетитовых кварцитов осуществляют в дробилках КСД-2200 как с предварительным грохочением так и без него. Для мелкого дробления применяют дробилки КМД-2200.
Для снижения крупности дробленой руды до 15—12 мм применяют замкнутые циклы дробления в последней стадии. Измельчение магнетитовых кварцитов осуществляется по двух-, трех- и четырехстадиальным схемам с применением барабанных мельниц со стальными мелющими телами, самоизмельчением, рудно-галечным измельчением, а также комбинированными методами. При измельчении стальными мелющими телами применяют шаровые и стержневые мельницы. Стержневые мельницы, как правило, работают в открытом цикле. Шаровое измельчение производится в замкнутом цикле со спиральными классификаторами или гидроциклонами. Доизмельчение промпродуктов по всем схемам производится в мельницах, работающих в замкнутом цикле с гидроциклонами.
Основные отечественные и зарубежные горно-обогатительные комбинаты перерабатывают бедные магнетитовые руды и получают концентраты высокого качества (65—66% железа). На рис. 2.1 приведена типовая схема обогащения железных (магнетитовых) руд.
В.М. Авдохин «Технологии обогащения полезных ископаемых», том 2, Москва, изд. МГГУ, 2006 год.
|