Глава 3. Математические понятия
Всякий математический объект обладает определенными свойствами. Например, ромб имеет 4 угла, 4 стороны, противоположные стороны параллельны. Можно указать и другие свойства, например, диагональ АС расположена горизонтально.
Среди свойств различают существенные и несущественные. Свойство считают существенным для объекта, если оно присуще этому объекту и без него он не может существовать. Несущественные свойства – это такие свойства, отсутствие которых не влияет на существование объекта.
Существенные свойства: иметь 4 равных стороны, 4 угла.
Несущественные свойства: вершина В лежит напротив вершины D, диагональ АС расположена горизонтально.
Чтобы понимать, что представляет собой данный объект, надо знать его существенные свойства. В этом случае говорят, что имеется понятие об этом объекте.
Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином. Так, говоря о треугольнике, имеют в виду все геометрические фигуры, являющиеся треугольниками.
Любое понятие имеет объем и содержание.
Определение. Объем понятия – это множество всех объектов, обозначаемых одним термином.
Определение. Содержание понятия – это множество всех существенных свойств объекта, отраженных в этом понятии.
Пример. Рассмотрим понятие «параллелограмм». Объем понятия – это множество различных параллелограммов (в том числе и ромбов, прямоугольников, квадратов). В содержание понятия входят такие свойства параллелограммов, как «иметь 4 стороны», «иметь параллельные противоположные стороны», «иметь равные противоположные углы» и т.д.
Между объемом и содержанием понятия существует такая связь: чем «больше» объем понятия, тем «меньше» его содержание и наоборот. Например, объем понятия «ромб» является частью понятия «параллелограмм», а в содержании понятия «ромб» содержится больше свойств, чем в содержании понятия «параллелограмм». Например, в содержании понятия «ромб» есть свойство «все стороны равны», которого нет в содержании понятия «параллелограмм».
Отношения между понятиями тесно связаны с отношениями между их объемами.
Условимся понятия обозначать строчными буквами а, b, с, d,…, а их объемы соответственно А, В, С, D,… .
Если объемы понятий а и b не пересекаются, т.е. А В = , то говорят, что понятия а и b несовместимы. Примерами несовместимых понятий являются понятия трапеции и треугольника.
Если объемы понятий а и b пересекаются, т.е. А В , то говорят, что понятия а и b совместимы. Пример – прямоугольник и ромб.
Если объемы понятий а и b совпадают, т.е. А = В, то говорят, что понятия а и b тождественны. Пример – квадрат и ромб с прямым углом.
Если объем понятия а является собственным подмножеством объема понятия b, т.е. А В, А В, то говорят, что:
а) понятие а является видовым по отношению к понятию b, понятие b – родовым по отношению к понятию а;
б) понятие а уже, чем понятие b, понятие b шире, чем понятие а;
в) понятие а есть частный случай понятия b, а понятие b – обобщение понятия а.
Пример: понятие «квадрат» – видовое по отношению к понятию «прямоугольник», а понятие «прямоугольник» – родовое по отношению к понятию «квадрат».
Остановимся подробнее на последнем отношении.
Понятие рода и вида относительны. Одно и то же понятие может быть видовым по отношению к одному понятию и родовым по отношению к другому. Например, понятие «прямоугольник» является родовым по отношению к понятию «квадрат» и видовым по отношению к понятию «параллелограмм».
Для данного понятия часто можно указать несколько родовых понятий, среди которых можно указать ближайшее. Например, родовыми для понятия «квадрат» будут понятия «прямоугольник», «параллелограмм», «четырехугольник». Ближайшим среди них будет понятие «прямоугольник».
Видовое понятие обладает всеми свойствами родового понятия. Например, понятие «ромб» является видовым по отношению к понятию «параллелограмм»; ромбы обладают всеми свойствами, присущими параллелограммам.
Рассмотрим отношения между понятиями «отрезок» и «прямая». Объемы этих понятий не пересекаются, т.к. ни один отрезок нельзя назвать прямой и наоборот. Об этих понятиях можно сказать, что они находятся в отношении целого и части: отрезок – часть прямой, а не ее вид. Заметим, что часть не всегда обладает свойством целого. Прямая бесконечна, а отрезок – нет.
§ 2. Определение понятия. Требования к определению понятия
Появление в математике новых понятий, а значит, и новых терминов, обозначающих эти понятия, предполагает их определение.
Определением обычно называют предложение, разъясняющее суть нового термина. Как правило, делают это на основе ранее введенных понятий. Определить понятие – значит указать существенные свойства объекта, которых достаточно для распознавания объекта.
Различают явные и неявные определения.
Явные определения имеют форму равенства, совпадения двух понятий, его можно представить в таком виде: а есть (по определению) b. Слова «есть (по определению)» обычно заменяют символом , и тогда определение выглядит так: а b.
Рассмотрим определение квадрата: «Квадратом называется прямоугольник с равными сторонами». В этом определении можно выделить определяемой понятие «квадрат» и определяющее понятие «прямоугольник с равными сторонами».
Примеры явных определений.
О
определяемое понятие
родовое понятие
видовое отличие
пределение через род и видовое отличие. Оно имеет вид:
+
определяющее понятие
Примером такого определения является определение квадрата, данное выше.
Требования к определению через род и видовое отличие:
Определение должно быть соразмерным – объемы определяемого и определяющего понятия должно совпадать. Например, определение «Квадрат – это четырехугольник с равными сторонами» соразмерным не является, т.к. множество четырехугольников с равными сторонами – это множество ромбов.
В определении не должно быть порочного круга – нельзя определять понятие через само себя. Так, нельзя дать такое определение: «сложение называется действие, при котором числа складываются».
Определение должно быть ясным – значения терминов, входящих в определяющее понятие должны быть известны к моменту определении нового понятия. Например, нельзя определить квадрат как ромб с прямыми углами, если понятие «параллелограмм» еще не изучено.
-
Определение должно быть достаточным – в определении должны быть указаны все свойства, позволяющие однозначно выделять объекты, принадлежащие объему определяемого понятия. Например, в определении «Биссектрисой угла называется луч, делящий угол пополам» этим свойством не обладает, т.к. не указано, что луч выходит из вершины угла.
Определение не должно быть избыточным – не должно быть указано лишних свойств. Так, в определении «Ромбом называется параллелограмм, у которого все стороны равны и диагонали взаимно перпендикулярны» свойство, что диагонали взаимно перпендикулярны, является лишним.
Генетические – указывается способ образования определяемого объекта. Например: «Ломаной называется линия, состоящая из точек и соединяющих их отрезков
-
Индуктивные – указываются некоторые основные объекты теории и правила, позволяющие получать новые из уже имеющихся. Например: «Геометрической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число».
Неявные определения не имеют формы совпадения двух понятий. В них нельзя выделить определяемое и определяющее понятия.
Примеры неявных определений.
Контекстуальные – содержание нового понятия раскрывается через отрывок текста, через контекст. Пример: после записи 3 + х = 9 и перечня чисел 2, 3, 6 и 7 идет текст: «х – неизвестное число, которое надо найти. Какое из чисел надо подставить вместо х, чтобы равенство было верным? Это число 6». Из этого текста следует, что уравнение – это равенство с неизвестным числом, которое надо найти, а решить уравнение – это значит найти такое значение х, при подстановке которого в уравнение получается верное равенство.
-
Остенсивные – введение терминов путем показа, демонстрации объектов, которые этими терминами обозначают. Пример: 2 < 7, 2 · 4 > 5 – это неравенства.
Неявные определения часто используются в начальной школе.
Контрольные вопросы
Какие свойства считают существенными и несущественными для объекта?
Что понимают под объемом понятия?
Что понимают под содержанием понятия?
В каком отношении находятся объемы понятий, если понятия несовместимы, совместимы, тождественны, одно понятие является видовым по отношении к другому понятию?
Что значит – определить понятие?
Какие определения относят к явным и неявным?
Какие правила необходимо соблюдать, формулируя определения понятий через род и видовое отличие?
|