Главная страница
Культура
Искусство
Языки
Языкознание
Вычислительная техника
Информатика
Финансы
Экономика
Биология
Сельское хозяйство
Психология
Ветеринария
Медицина
Юриспруденция
Право
Физика
История
Экология
Промышленность
Энергетика
Этика
Связь
Автоматика
Математика
Электротехника
Философия
Религия
Логика
Химия
Социология
Политология
Геология

Лекции Общие понятия математики 14. Элементы теории множеств



Скачать 0.75 Mb.
Название Элементы теории множеств
Анкор Лекции Общие понятия математики 14.doc
Дата 26.04.2017
Размер 0.75 Mb.
Формат файла doc
Имя файла Лекции Общие понятия математики 14.doc
Тип Курс лекций
#3808
страница 6 из 9
1   2   3   4   5   6   7   8   9

Глава 6. Отношения на множестве

§ 1. Понятие отношения. Способы задания отношений



Мы выяснили, что между элементами двух различных множеств существуют различные соответствия. Но различные связи, отношения существуют и между элементами одного и того же множества.

Например, на множестве студентов первого курса можно рассмотреть отношения: «х старше у», «х и у – друзья», «х и у учатся в одной группе» и т.д.

В математике рассматриваются такие отношения как «х > у», «х кратно у», «прямая х параллельна прямой у» и т.д.

В математике чаще всего рассматриваются отношения между двумя объектами. Их называют бинарными.

Определение. Отношением между элементами множества Х или отношением на множестве Х называется всякое подмножество декартова произведения ХХ.

Другими словами: бинарное отношение – это соответствие, заданное на одном и том же множестве Х.

Обозначают отношения прописными буквами латинского алфавита: Р, Q, R и т.д.

Поскольку отношение есть частный случай соответствия, то и способы задания отношений будут те же, что и для соответствий.

Рассмотрим отношение «меньше», заданное на множестве Х = {1; 2; 3; 4}. Отношение задано указанием характеристического свойства. Зададим его перечислением: R = {(1; 2); (1; 3); (1; 4); (2; 3); (2; 4); (3; 4)}. Также данное отношение можно задать







1

2

3

4

1













2













3













4













таблицей


графом

графиком

Точки, изображающие элементы множества Х – вершины графа, стрелки – ребра графа.

Пример. Построим граф отношения «х кратно у», Х = {1; 2; 3; 4}.


Каждое число является делителем самого себя, поэтому для каждой точки множества рисуем стрелку, начало и конец которой совпадают (стрелку на графе, у которой начало и конец совпадают, называют петлей).

Графы отношений удобно использовать при решении логических задач, в том числе и в начальной школе.

Задача. Из лагеря вышли 5 туристов. Мы назовем их не в том порядке, в котором они идут один за другим: Вася, Аня, Толя, Лена и Миша. Толя идет впереди Миши, Лена – впереди Васи, но позади Миши, Аня – впереди Толи. Кто идет первым и кто идет последним? Кто идет вслед за Мишей, и кто идет перед Мишей?

В задаче рассматривается два отношения: «идти впереди» и «идти позади». Выберем одно из них, например, «идти впереди», т.е. будем на графе ставить стрелку от впереди идущего к тому, кто идет вслед за ним. Граф будет выглядеть следующим образом:
Вася Аня

Толя
Миша
Лена

По графу можно легко ответить на все вопросы задачи: Первой идет Аня, последним – Вася, Вслед за Мишей идет Лена, а перед Мишей – Толя.

1   2   3   4   5   6   7   8   9
написать администратору сайта